Второй способ ввода параллелизм называется параллелизмом задач. При таком подходе две операции или больше выполняются параллельно. Следовательно, параллелизм задач представляет собой разновидность параллелизма, который достигался в прошлом средствами класса Thread
. А к преимуществам, которые сулит применение TPL, относится простота применения и возможность автоматически масштабировать исполнение кода на несколько процессоров.
В основу TPL положен класс Task
. Элементарная единица исполнения инкапсулируется в TPL средствами класса Task
, а не Thread
. Класс Task
отличается от класса Thread
тем, что он является абстракцией, представляющей асинхронную операцию. А в классе Thread
инкапсулируется поток исполнения. Разумеется, на системном уровне поток по-прежнему остается элементарной единицей исполнения, которую можно планировать средствами операционной системы. Но соответствие экземпляра объекта класса Task
и потока исполнения не обязательно оказывается взаимно-однозначным. Кроме того, исполнением задач управляет планировщик задач, который работает с пулом потоков. Это, например, означает, что несколько задач могут разделять один и тот же поток. Класс Task
(и вся остальная библиотека TPL) определены в пространстве имен System.Threading.Tasks
.
Создание задачи
Создать новую задачу в виде объекта класса Task
и начать ее исполнение можно самыми разными способами. Для начала создадим объект типа Task
с помощью конструктора и запустим его, вызвав метод Start()
. Для этой цели в классе Task
определено несколько конструкторов. Ниже приведен тот конструктор, которым мы собираемся воспользоваться:
public Task(Action действие)
где действие обозначает точку входа в код, представляющий задачу, тогда как Action
— делегат, определенный в пространстве имен System
. Форма делегата Action
, которой мы собираемся воспользоваться, выглядит следующим образом.
public delegate void Action()
Таким образом, точкой входа должен служить метод, не принимающий никаких параметров и не возвращающий никаких значений. (Как будет показано далее, делегату Action
можно также передать аргумент.)
Как только задача будет создана, ее можно запустить на исполнение, вызвав метод Start()
. Ниже приведена одна из его форм.
public void Start()
После вызова метода Start()
планировщик задач запланирует исполнение задачи. В приведенной ниже программе все изложенное выше демонстрируется на практике. В этой программе отдельная задача создается на основе метода MyTask()
. После того как начнет выполняться метод Main()
, задача фактически создается и запускается на исполнение. Оба метода MyTask()
и Main()
выполняются параллельно.
// Создать и запустить задачу на исполнение.
using System;
using System.Threading;
using System.Threading.Tasks;
class DemoTask {
static void MyTask() {
Console.WriteLine("MyTask() запущен");
for(int count = 0; count < 10; count++) {
Thread.Sleep(500);
Console.WriteLine("В методе MyTask(), подсчет равен " + count);
}
Console.WriteLine("MyTask завершен");
}
static void Main() {
Console.WriteLine("Основной поток запущен.");
// Сконструировать объект задачи.
Task tsk = new Task(MyTask);
// Запустить задачу на исполнение,
tsk.Start();
// метод Main() активным до завершения метода MyTask().
for(int i = 0; i < 60; i++) {
Console.Write(".");
Thread.Sleep(100);
}
Console.WriteLine("Основной поток завершен.");
}
}
Ниже приведен результат выполнения этой программы. (У вас он может несколько отличаться в зависимости от загрузки задач, операционной системы и прочих факторов.)
Основной поток запущен.
.MyTask() запущен
....В методе MyTask(), подсчет равен 0
.....В методе MyTask(), подсчет равен 1
.....В методе MyTask(), подсчет равен 2
....В методе MyTask(), подсчет равен 3
.....В методе MyTask(), подсчет равен 4
.....В методе MyTask(), подсчет равен 5
Читать дальше