Тимур Казанцев - Искусственный интеллект и Машинное обучение. Основы программирования на Python

Здесь есть возможность читать онлайн «Тимур Казанцев - Искусственный интеллект и Машинное обучение. Основы программирования на Python» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2020, ISBN: 2020, Жанр: Программирование, Прочая околокомпьтерная литература, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Искусственный интеллект и Машинное обучение. Основы программирования на Python: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Искусственный интеллект и Машинное обучение. Основы программирования на Python»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге мы расскажем вам об основных понятиях Искусственного интеллекта и Машинного обучения. Вы познакомитесь с основными алгоритмами и моделями, использующимися для решения абсолютно разных задач. Мы научимся предсказывать цены на квартиры, ВВП стран, распределим цветы на разные классы и даже построим собственную нейронную сеть, которая сможет предсказывать, что изображено на рисунке.
Для желающих овладеть языком программирования Python, на котором решается большинство задач по машинному обучению, мы пройдем основы программирования на этом языке и научимся использовать его для построения моделей машинного и глубокого обучения.

Искусственный интеллект и Машинное обучение. Основы программирования на Python — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Искусственный интеллект и Машинное обучение. Основы программирования на Python», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1999 году компания Sony анонсирует собачку Айбо, навыки и поведение которой развиваются со временем. В этом же году впервые Массачусетский технологический институт показывает эмоциональный ИИ под названием Кисмет, который может распознавать эмоции людей и реагировать на них соответствующим образом.

В 2002 году начинается массовое производство автономных пылесосов iRobot, которые умеют перемещаться по дому самостоятельно, избегая препятствий.

В 2009 году Google подключается к гонке компаний по разработке собственного беспилотного автомобиля.

В 2011 году появляются Siri, Google Now и Cortana, умные виртуальные ассистенты. В 2014 году к ним присоединится Alexa от Amazon, а в 2017 году Алиса от Яндекса.

Помните мы говорили про Тест Тьюринга, который был изобретен Аланом Тьюрингом в 1950 году и был предназначен чтобы понять сможет ли ИИ обмануть человека и убедить его, что перед ним не компьютер, а человек. Так вот в 2014 году компьютерный чатбот Эжен Густман прошел этот тест, заставив треть жюри поверить, что компьютером управлял человек, а не ИИ.

В 2016 году Deep Mind от Google под названием Alpha Go побеждает чемпиона по игре в Го. Игра Го намного сложнее шахмат, здесь больше вариантов развития игры, и тем не менее Го стала второй игрой, в которой люди больше не могут выиграть.

В 2017 году после более чем 10 лет попыток и неудач, две команды независимо друг от друга разработали свои модели ИИ, компьютеры DeepStack и Libratus, которые смогли обыграть профессионалов в покер. В отличие от Го и шахмат, где все подчиняется строгим правилам, в покере на первый план выходит человеческий фактор. Потому что покер – во многом психологическая игра, построенная на эмоциях, невербальной коммуникации, умении блефовать и распознавать блеф.

Один из участников игры в покер с этими компьютерами так описал свои впечатления: «Это как играть с кем-то, кто видит все твои карты. Я не обвиняю нейросеть в нечестной игре, просто она действительно настолько хороша».

В 2015 году Илон Маск и Сэм Альтман, президент Y Combinator, основали компанию OpenAI, чтобы создать «открытый и дружественный» искусственный интеллект.

В 2017 году команда разработчиков OpenAI решила натренировать свою нейросеть в крупнейшей киберспортивной игре Dota 2. В этой игре играют команды по 5 человек, и они используют множество комбинаций из более чем сотни героев. У каждого из них есть свой набор навыков, За две недели нейросеть смогла обучиться и победить нескольких лучших игроков мира в режиме один на один, и сейчас ее создатели готовятся выпустить версию для основного режима, пять на пять.

Перемещаемся еще ближе к нашим дням. В начале 2018 году алгоритмы от Alibaba и Microsoft превзошли человека в тесте на понимание прочитанного текста.

В марте 2018 года небольшой робот собрал кубик Рубика за 0,38 секунды. Рекорд среди людей до этого составлял – 4,69 секунды.

Одним из самых важных прорывов в развитии ИИ, который может принести много пользы человечеству, стало то, что в мае 2018 искусственный интеллект стал лучше людей распознавать рак кожи.

Кроме распознавания заболеваний у пациентов, алгоритмы ИИ используются сегодня для исследования сворачивания белка, пытаясь найти лекарство от болезней Альцгеймера и Паркинсона. ИИ используется также для снижения уровня потребляемой энергии, и создания новых революционных материалов.

Искусственный интеллект активно применяется и в бизнесе – банки используют его для одобрения кредитов, а розничные компании применяют его для более точечных рекламных компаний и предложений для своих клиентов.

Почему же именно в наше время ИИ стал так быстро набирать скорость. Этому есть две причины. Во-первых, сейчас в мире производится огромное количество информации. Каждые два года, объем информации в мире удваивается. А как мы знаем, ИИ учится на имеющихся данных. И вторая причина – это наличие сильных вычислительных мощностей. Наши компьютеры сегодня достаточно сильные, чтобы они умели обрабатывать эти объемы информации в достаточно ограниченные сроки.

Итак, мы посмотрели на краткую историю развития ИИ. В одной из следующих глав мы посмотрим, чего же можно ожидать от развития ИИ в будущем.

Различие между ИИ, машинным обучением, глубинным обучением и нейронными сетями

Сегодня зачастую термины искусственный интеллект, машинное обучение (МО), глубокое обучение (ГО), нейронные сети (НС), Биг Дата используются взаимозаменяемо. И хотя они действительно очень связаны между собой, давайте разберемся что представляет собой каждое из этих понятий, и чем они отличаются.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Искусственный интеллект и Машинное обучение. Основы программирования на Python»

Представляем Вашему вниманию похожие книги на «Искусственный интеллект и Машинное обучение. Основы программирования на Python» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Искусственный интеллект и Машинное обучение. Основы программирования на Python»

Обсуждение, отзывы о книге «Искусственный интеллект и Машинное обучение. Основы программирования на Python» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x