Приемы, описываемые далее, помогают снизить потребление электроэнергии процессором, но не самой платой. В примерах, приведенных в дальнейшем, я использовал плату Arduino Mini Pro, питающуюся непосредственно напряжением 3,3 В через контакты VCC и GND (рис. 5.1) в обход стабилизатора напряжения, чтобы кроме светодиода On питание подводилось только к микроконтроллеру.

Рис. 5.1.Плата Arduino Mini Pro, запитанная непосредственно напряжением 3 В
Такая схема часто используется в системах с автономным питанием от аккумуляторов, например от единственного литий-полимерного (Lithium Polymer, LiPo) аккумулятора, дающего напряжение 2,7 В, когда почти разряжен, и 4,2 В, когда полностью заряжен, который прекрасно подходит для непосредственного питания микроконтроллера ATmega328.
Ток и аккумуляторы
Эта книга посвящена программному обеспечению, поэтому я не буду останавливаться на обсуждении аккумуляторов дольше, чем необходимо. На рис. 5.2 изображены аккумуляторы, которые можно использовать для питания плат Arduino.
Слева вверху изображен цилиндрический литий-полимерный аккумулятор емкостью 2400 мА·ч. Ниже — небольшой плоский литий-полимерный аккумулятор емкостью 850 мА·ч. Литий-полимерные аккумуляторы имеют небольшой вес, могут перезаряжаться много раз и имеют большую емкость для своих веса и размеров. Справа вверху изображен 9-вольтовый никель-металлгидридный аккумулятор емкостью 200 мА·ч. Этот

Рис. 5.2.Аккумуляторы для питания плат Arduino
аккумулятор тоже поддерживает многократную перезарядку, но создан по устаревшей технологии. Так как он имеет выходное напряжение 9 В, его можно использовать для питания плат Arduino только через встроенный стабилизатор напряжения. Вы можете приобрести специальные зажимы для подключения аккумулятора к контактам питания Arduino. Наконец, справа внизу изображена 3-вольтовая незаряжаемая литиевая батарея (CR2025) емкостью около 160 мА·ч.
Как правило, чтобы получить время в часах, в течение которого аккумулятор продержится, прежде чем полностью разрядится, достаточно разделить емкость аккумулятора в миллиампер-часах [мА·ч] на силу потребляемого тока в миллиамперах [мА]:
Время работы батареи = Емкость батареи/Потребляемый ток.
Например, если для питания 3-вольтовой платы Mini Pro использовать батарею CR2025, можно ожидать, что ее хватит на 20 часов (160 мА·ч/8 мА). Если ту же плату запитать от литий-полимерного аккумулятора емкостью 2400 мА·ч, можно надеяться, что его хватит на 300 часов (2400 мА·ч /8 мА).
Снижение рабочей частоты
Большинство плат семейства Arduino работает с тактовой частотой 16 МГц. Основное потребление электроэнергии микроконтроллером происходит в моменты, когда тактовый сигнал переключается из состояния HIGH в состояние LOW, то есть частота, на которой работает процессор, оказывает существенное влияние на потребляемый ток. Конечно, уменьшение тактовой частоты приведет к снижению быстродействия микроконтроллера, что, впрочем, может не являться проблемой.
Снизить рабочую частоту микроконтроллера ATmega328 можно прямо из скетча. Для этой цели удобно использовать библиотеку Arduino Prescaler ( http://playground.arduino.cc/Code/Prescaler).
Библиотека Prescaler не только позволяет уменьшить рабочую частоту микроконтроллера, но и предоставляет свои версии функций millis и delay с именами trueMillis и trueDelay. Такая замена совершенно необходима, потому что уменьшение тактовой частоты увеличивает задержки в той же пропорции.
Скетч в следующем примере включает светодиод L на 1 с и затем выключает на 5 с, в течение которых потребляемый ток измерялся для всех возможных значений деления частоты, поддерживаемых библиотекой Prescaler.
// sketch_05_01_prescale
#include
void setup()
{
pinMode(13, OUTPUT);
setClockPrescaler(CLOCK_PRESCALER_256);
}
void loop()
{
digitalWrite(13, HIGH);
trueDelay(1000);
digitalWrite(13, LOW);
trueDelay(5000);
}
Библиотека предоставляет множество констант деления тактовой частоты. Так, константа CLOCK_PRESCALER_1 оставляет исходную тактовую частоту 16 МГц, а противоположная ей константа CLOCK_PRESCALER_256 делит исходную тактовую частоту на 256, устанавливая ее на уровне всего 62,5 кГц.
В табл. 5.2 показаны результаты измерения потребляемого тока на всех возможных частотах, а на рис. 5.3 те же данные представлены в виде графика. Как видно на графике, кривая потребления тока быстро выравнивается, поэтому частота 1 МГц выглядит наиболее оптимальным компромиссом между частотой и потребляемым током.
Читать дальше