Если коротко, то язык ассемблера – это символическое представление машинного языка. Все процессы в машине на самом низком, аппаратном уровне приводятся в действие только командами (инструкциями) машинного языка. Отсюда понятно, что, несмотря на общее название, язык ассемблера для каждого типа компьютера свой. Это касается и внешнего вида программ, написанных на ассемблере, и идей, отражением которых этот язык является.
По-настоящему решить проблемы, связанные с аппаратурой (или, даже более того, зависящие от аппаратуры, как, к примеру, повышение быстродействия программы), невозможно без знания ассемблера.
Программист или любой другой пользователь могут использовать любые высокоуровневые средства вплоть до программ построения виртуальных миров и, возможно, даже не подозревать, что на самом деле компьютер выполняет не команды языка, на котором написана его программа, а их трансформированное представление в форме скучной и унылой последовательности команд совсем другого языка – машинного. А теперь представим, что у такого пользователя возникла нестандартная проблема. К примеру, его программа должна работать с некоторым необычным устройством или выполнять другие действия, требующие знания принципов работы аппаратуры компьютера. Каким бы хорошим ни был язык, на котором программист написал свою программу, без знания ассемблера ему не обойтись. И не случайно практически все компиляторы языков высокого уровня содержат средства связи своих модулей с модулями на ассемблере либо поддерживают выход на ассемблерный уровень программирования.
Компьютер составлен из нескольких физических устройств, каждое из которых подключено к одному блоку, называемому системным. Чтобы понять их функциональное назначение, посмотрим на структурную схему типичного компьютера (рис. 1). Она не претендует на безусловную точность и имеет целью лишь показать назначение, взаимосвязь и типовой состав элементов современного персонального компьютера.
Рис. 1. Структурная схема персонального компьютера
2. Программная модель микропроцессора
На современном компьютерном рынке наблюдается большое разнообразие различных типов компьютеров. Поэтому возможно предположить возникновение у потребителя вопроса о том, как оценить возможности конкретного типа (или модели) компьютера и его отличительные особенности от компьютеров других типов (моделей). Чтобы собрать воедино все понятия, характеризующие компьютер с точки зрения его функциональных программно-управляемых свойств, существует специальный термин – архитектура ЭВМ. Впервые понятие архитектура ЭВМ стало упоминаться с появлением машин 3-го поколения для их сравнительной оценки.
К изучению языка ассемблера любого компьютера имеет смысл приступать только после выяснения того, какая часть компьютера оставлена видимой и доступной для программирования на этом языке. Это так называемая программная модель компьютера, частью которой является программная модель микропроцессора, которая содержит тридцать два регистра, в той или иной мере доступных для использования программистом.
Данные регистры можно разделить на две большие группы:
1) 6 пользовательских регистров;
2) 16 системных регистров.
3. Пользовательские регистры
Как следует из названия, пользовательскими регистры называются потому, что программист может использовать их при написании своих программ. К этим регистрам относятся (рис. 2):
1) восемь 32-битных регистров, которые могут использоваться программистами для хранения данных и адресов (их еще называют регистрами общего назначения (РОН)):
eax/ax/ah/al;
ebx/bx/bh/bl;
edx/dx/dh/dl;
ecx/cx/ch/cl;
ebp/bp;
esi/si;
edi/di;
esp/sp.
2) шесть регистров сегментов: cs, ds, ss, es, fs, gs;
3) регистры состояния и управления:
регистр флагов eflags/flags;
регистр указателя команды eip/ip.
Рис. 2. Пользовательские регистры
Многие из этих регистров приведены с наклонной разделительной чертой. Это не разные регистры – это части одного большого 32-разрядного регистра. Их можно использовать в программе как отдельные объекты.
Читать дальше
Конец ознакомительного отрывка
Купить книгу