Standard Template Library Programmer's Guide
Здесь есть возможность читать онлайн «Standard Template Library Programmer's Guide» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Программирование, Справочники, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Standard Template Library Programmer's Guide
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
Standard Template Library Programmer's Guide: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Standard Template Library Programmer's Guide»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Standard Template Library Programmer's Guide — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Standard Template Library Programmer's Guide», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
if (result.first < A + N) cout << " *result.first = " << *result.first << endl;
if (result.second < A + N) cout << " *result.second = " << *result.second << endl;
}
}
The output is:
Searching for 2
First position where 2 could be inserted: 1
Last position where 2 could be inserted: 2
*result.first = 2
*result.second = 3
Searching for 3
First position where 3 could be inserted: 2
Last position where 3 could be inserted: 5
*result.first = 3
*result.second = 5
Searching for 4
First position where 4 could be inserted: 5
Last position where 4 could be inserted: 5
*result.first = 5
*result.second = 5
[1] Note that you may use an ordering that is a strict weak ordering but not a total ordering; that is, there might be values x and y such that x < y , x > y , and x == y are all false . (See the LessThan Comparable requirements for a more complete discussion.) Finding value in the range [first, last) , then, doesn't mean finding an element that is equal to value but rather one that is equivalent to value : one that is neither greater than nor less than value . If you're using a total ordering, however (if you're using strcmp , for example, or if you're using ordinary arithmetic comparison on integers), then you can ignore this technical distinction: for a total ordering, equality and equivalence are the same.
[2] Note that equal_range may return an empty range; that is, it may return a pair both of whose elements are the same iterator. Equal_range returns an empty range if and only if the range [first, last) contains no elements equivalent to value . In this case it follows that there is only one position where value could be inserted without violating the range's ordering, so the return value is a pair both of whose elements are iterators that point to that position.
[3] This difference between Random Access Iterators and Forward Iterators is simply because advance is constant time for Random Access Iterators and linear time for Forward Iterators.
lower_bound , upper_bound , binary_search
binary_search
Category: algorithms
Component type: function
Binary_search is an overloaded name; there are actually two binary_search functions.
template
bool binary_search(ForwardIterator first, ForwardIterator last, const LessThanComparable& value);
template
bool binary_search(ForwardIterator first, ForwardIterator last, const T& value, StrictWeakOrdering comp);
Binary_search is a version of binary search: it attempts to find the element value in an ordered range [first, last) It returns true if an element that is equivalent to [1] value is present in [first, last) and false if no such element exists. [2] The first version of binary_search uses operator< for comparison, and the second uses the function object comp .
Specifically, the first version returns true if and only if there exists an iterator i in [first, last) such that *i < value and value < *i are both false . The second version returns true if and only if there exists an iterator i in [first, last) such that comp(*i, value) and comp(value, *i) are both false .
Defined in the standard header algorithm, and in the nonstandard backward-compatibility header algo.h.
For the first version:
• ForwardIterator is a model of Forward Iterator.
• LessThanComparable is a model of LessThan Comparable.
• The ordering on objects of type LessThanComparable is a strict weak ordering , as defined in the LessThan Comparable requirements.
• ForwardIterator 's value type is the same type as LessThanComparable .
For the second version:
• ForwardIterator is a model of Forward Iterator.
• StrictWeakOrdering is a model of Strict Weak Ordering.
• ForwardIterator 's value type is the same type as T .
• ForwardIterator 's value type is convertible to StrictWeakOrdering 's argument type.
For the first version:
• [first, last) is a valid range.
• [first, last) is ordered in ascending order according to operator< . That is, for every pair of iterators i and j in [first, last) such that i precedes j , *j < *i is false .
For the second version:
• [first, last) is a valid range.
• [first, last) is ordered in ascending order according to the function object comp . That is, for every pair of iterators i and j in [first, last) such that i precedes j , comp(*j, *i) is false .
The number of comparisons is logarithmic: at most log(last – first) + 2 . If ForwardIterator is a Random Access Iterator then the number of steps through the range is also logarithmic; otherwise, the number of steps is proportional to last – first . [3]
int main() {
int A[] = { 1, 2, 3, 3, 3, 5, 8 };
const int N = sizeof(A) / sizeof(int);
for (int i = 1; i <= 10; ++i) {
cout << "Searching for " << i << ": " << (binary_search(A, A + N, i) ? "present" : "not present") << endl;
}
}
The output is:
Searching for 1: present
Searching for 2: present
Searching for 3: present
Searching for 4: not present
Searching for 5: present
Searching for 6: not present
Searching for 7: not present
Searching for 8: present
Searching for 9: not present
Searching for 10: not present
[1] Note that you may use an ordering that is a strict weak ordering but not a total ordering; that is, there might be values x and y such that x < y , x > y , and x == y are all false . (See the LessThan Comparable requirements for a more complete discussion.) Finding value in the range [first, last) , then, doesn't mean finding an element that is equal to value but rather one that is equivalent to value : one that is neither greater than nor less than value . If you're using a total ordering, however (if you're using strcmp , for example, or if you're using ordinary arithmetic comparison on integers), then you can ignore this technical distinction: for a total ordering, equality and equivalence are the same.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Standard Template Library Programmer's Guide»
Представляем Вашему вниманию похожие книги на «Standard Template Library Programmer's Guide» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Standard Template Library Programmer's Guide» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.