Вообще говоря, логарифмическое время поиска обеспечивается не всегда. Оно гарантировано лишь в том случае, если алгоритмам передаются итераторы произвольного доступа. Если алгоритм получает менее мощные итераторы (например, двусторонние), он выполняет логарифмическое число сравнений, но работает с линейной сложностью. Это объясняется тем, что без поддержки «итераторной математики» алгоритму необходимо линейное время для перемещения между позициями интервала, в котором производится поиск.
Четверка алгоритмов set_unon, set_inesection, set_diffeence
и set_symmetric_difference
предназначена для выполнения со множествами операций с линейным временем. Почему этим алгоритмам нужны сортированные интервалы? Потому что в противном случае они не справятся со своей задачей за линейное время. Начинает прослеживаться некая закономерность — алгоритмы требуют передачи сортированных интервалов для того, чтобы обеспечить лучшее быстродействие, невозможное при работе с несортированными интервалами. В дальнейшем мы лишь найдем подтверждение этой закономерности.
Алгоритмы merge
и inplace_merge
выполняют однопроходное слияние с сортировкой: они читают два сортированных интервала и строят новый сортированный интервал, содержащий все элементы обоих исходных интервалов. Эти алгоритмы работают с линейным временем, что было бы невозможно без предварительной сортировки исходных интервалов.
Перечень алгоритмов, работающих с сортированными интервалами, завершает алгоритм includes
. Он проверяет, входят ли все объекты одного интервала в другой интервал. Поскольку includes
рассчитывает на сортировку обоих интервалов, он обеспечивает линейное время. Без этого он в общем случае работает медленнее.
В отличие от перечисленных алгоритмов, unique
и unique_copy
способны работать и с несортированными интервалами. Но давайте взглянем на описание unique
в Стандарте (курсив мой): «…Удаляет из каждой смежной группы равных элементов все элементы, кроме первого».
Иначе говоря, если вы хотите, чтобы алгоритм unique
удалил из интервала все дубликаты (то есть обеспечил «уникальность» значений в интервале), сначала необходимо позаботиться о группировке всех дубликатов. Как нетрудно догадаться, именно эта задача и решается в процессе сортировки. На практике алгоритм unique
обычно применяется для исключения всех дубликатов из интервала, поэтому интервал, передаваемый при вызове unique
(или unique_copy
), должен быть отсортирован. Программисты Unix могут обратить внимание на поразительное сходство между алгоритмом STL unique
и командой Unix uniq
— подозреваю, что совпадение отнюдь не случайное.
Следует помнить, что unique
исключает элементы из интервала по тому же принципу, что и remove
, то есть ограничивается «логическим» удалением. Если вы не совсем уверены в том, что означает этот термин, немедленно обратитесь к советам 32 и 33. Трудно выразить, сколь важно доскональное понимание принципов работы remove
и remove
-подобных алгоритмов. Общих представлений о происходящем недостаточно. Если вы не знаете, как работают эти алгоритмы, у вас будут неприятности.
Давайте посмотрим, что же означает само понятие «сортированный интервал». Поскольку STL позволяет задать функцию сравнения, используемую в процессе сортировки, разные интервалы могут сортироваться по разным критериям. Например, интервал int
можно отсортировать как стандартным образом (то есть по возрастанию), так и с использованием greater
, то есть по убыванию. Интервал объектов Widget
может сортироваться как по цене, так и по дате. При таком изобилии способов сортировки очень важно, чтобы данные сортировки, находящиеся в распоряжении контейнера STL, была логически согласованы. При передаче сортированного интервала алгоритму, который также получает функцию сравнения, проследите за тем, чтобы переданная функция сравнения вела себя так же, как функция, применявшаяся при сортировке интервала.
Рассмотрим пример неправильного подхода:
vector v; // Создать вектор, заполнить
… // данными, отсортировать
sort(v.begin(), v.end(), greater()); // по убыванию.
… // Операции с вектором
// (не изменяющие содержимого).
bool a5Exists = // Поиск числа 5 в векторе.
binary_search(v.begin(), v.end(), 5); // Предполагается, что вектор
Читать дальше