Это классический пример объектно-ориентированного проектирования. Два класса имеют общее свойство (способ реализации fly), поэтому оно реализуется в базовом классе и наследуется обоими подклассами. Благодаря этому проект явным образом выделяет общие свойства, что позволяет избежать дублирования, благоприятствует проведению будущих модернизаций и упрощает долгосрочную эксплуатацию – иными словами, обеспечивает все, за что так ценится объектно-ориентированная технология. Программисты компании XYZ Airlines могут собой гордиться.
А теперь предположим, что дела XYZ идут в гору, и компания решает приобрести новый самолет модели C. Эта модель отличается от моделей A и B, в частности, тем, что летает по-другому.
Программисты компании XYZ добавляют в иерархию класс ModelC, но в спешке забывают переопределить функцию fly:
class ModelB: public Airplane {
... // функция fly не объявлена
};
В своем коде потом они пишут что-то вроде этого:
Airport PDX(...); // PDX – аэропорт возле моего дома
Airplane *pa = new ModelC;
...
pa->fly(PDX); // вызывается Airplane::fly!
Назревает катастрофа: делается попытка отправить в полет объект ModelC, как если бы он принадлежал одному из классов ModelA или ModelB. Такой образ действия вряд ли может внушить доверие пассажирам.
Проблема здесь заключается не в том, что Airplane::fly ведет себя определенным образом по умолчанию, а в том, что такое наследование допускает неявное применение этой функции для ModelC. К счастью, легко можно предложить подклассам поведение по умолчанию, но не предоставлять его, если они сами об этом не попросят. Трюк состоит в том, чтобы разделить интерфейс виртуальной функции и ее реализацию по умолчанию. Вот один из способов добиться этого:
class Airplane {
public:
virtual void fly(const Airport& destination) = 0;
...
protected:
void defaultFly(const Airport& destination);
};
void Airplane::defaultFly(const Airport& destination)
{
код по умолчанию, описывающий полет самолета в заданный пункт назначения
}
Обратите внимание, что функция Airplane::fly преобразовна в чисто виртуальную. Она предоставляет интерфейс для полета. В классе Airplane присутствует и реализация по умолчанию, но теперь она представлена в форме независимой функции defaultFly. Классы, подобные ModelA и ModelB, которые хотят использовать поведение по умолчанию, просто выполняют встроенный вызов defaultFly внутри fly (см. также правило 30 о взаимодействии встраивания и виртуальных функций):
class ModelA: public Airplane {
public:
virtual void fly(const Airport& destination)
{ defaultFly(destination};}
...
};
class ModelB: public Airplane {
public:
virtual void fly(const Airport& destination)
{ defaultFly(destination};}
...
};
Теперь для класса ModelC возможность случайно унаследовать некорректную реализацию fly исключена, поскольку чисто виртуальная функция в Airplane вынуждает ModelC создавать свою собственную версию fly.
class ModelC: public Airplane {
public:
virtual void fly(const Airport& destination)
...
};
void ModelC::fly(const Airport& destination)
{
код, описывающий полет самолета ModelC в заданный пункт назначения
}
Эта схема не обеспечивает «защиту от дурака» (программисты все же могут создать себе проблемы копированием/вставкой), но она более надежна, чем исходная. Что же касается функции Airplane::defaultFly, то она объявлена защищенной, поскольку действительно является деталью реализации класса Airplane и производных от него. Пассажиры теперь должны беспокоиться только о том, чтобы улететь, а не о том, как происходит полет.
Важно также то, что Airplane::defaultFly объявлена как невиртуальная функция. Это связано с тем, что никакой подкласс не должен ее переопределять – обстоятельство, которому посвящено правило 36. Если бы defaultFly была виртуальной, перед вами снова встала бы та же самая проблема: что, если некоторые подклассы забудут переопределить defaultFly должным образом?
Иногда высказываются возражения против идеи разделения функций на обеспечивающие интерфейс и реализацию по умолчанию, такие, например, как fly и defaultFly. Прежде всего, отмечают противники этой идеи, это засоряет пространство имен класса близкими названиями функций. Все же они соглашаются с тем, что интерфейс и реализация по умолчанию должны быть разделены. Как разрешить кажущееся противоречие? Для этого используется тот факт, что производные классы должны переопределять чисто виртуальные функции и при необходимости предоставлять свои собственные реализации. Вот как можно было бы использовать возможность определения чисто виртуальных функций в иерархии Airplane:
Читать дальше
Конец ознакомительного отрывка
Купить книгу