Но если противоположные настроения в ткани произведения тесно переплетены и не распределяются по фрагментам, то здесь компьютер бессилен. Он может лишь указать доминирующие звуки — и все. Проследить за переплетением этих звуков в тексте и выяснить, какую фоносемантическую роль они выполняют, может только человек.
Разговор с компьютером нужен отнюдь не для светской беседы у камина за чашкой кофе. Это лишь иллюстрация способностей машины имитировать восприятие фоносемантики. Но уже и в том виде, как она есть, программа автоматического анализа фоносемантики, фоно-символики текстов может применяться и для решения практических задач.
Например, компьютер может стать помощником переводчика. Если в тексте использован прием специальной организации фоносемантики, то переводчику неплохо бы повторить эту организацию и на языке перевода, иначе какая-то часть общей художественной информации будет неминуемо потеряна.
Дело осложняется тем, что фоносемантика имеет как универсальные для всех языков черты, так и специфические для каждого конкретного языка. Так, очень редкий для русской речи, самый «плохой» и «отталкивающий» для русских, звук X немцы таковым не считают. В их языке сходный звук встречается довольно часто. Неплохими они считают и твердые X, Ф, Ш («очень плохие» для русских), так как в немецком похожие на них звуки весьма употребительны. Или, скажем, шипящие звуки русские оценивают как «плохие», «темные», «тусклые», «шершавые», «страшные», а поляки не приписывают им отрицательных характеристик, потому что в их речи шипящие звуки очень часты, а потому привычны, обычны.
Следовательно, если в русском тексте содержательность звучания создана подбором шипящих, то при переводе на польский или немецкий нельзя просто увеличить частотность шипящих — это не приведет к нужному эффекту.
Например, звуковая организация стихотворения Блока «О весна без конца и без краю» построена на столкновении контрастных по содержательности звуков — самых «грубых» Р, Д и самых нежных Ю, И, самых «темных» X, Ы и самых «светлых» Ю, И, 3. С одной стороны, в стихотворении инструментовка на Ю, И. «узнаю, принимаю, приветствую, встречаю, любя». С другой — на X, Ы: «в завесах темных окна, колодцы земных городов, томления рабьих трудов, в змеиных кудрях, на холодных и сжатых губах». Чтобы передать эти фоно-семантические контрасты на немецком языке, нет смысла повторять инструментовку на звук X — он в немецком не имеет нужной содержательности. Необходимо в немецком найти звук, содержательность которого соответствует русскому X, и на него инструментовать «темные» и «страшные» строки.
Так что переводить приходится не само звучание, а его содержательность, для чего эту содержательность нужно знать и в языке оригинала, и в языке перевода. Вот тут компьютер может быть незаменимым помощником. Если ему сообщить данные о содержательности звуков и их нормальной частотности в нужных языках, он определит фоносемантику исходного текста, выделит доминирующие звуки, найдет соответствие им в языке перевода, а затем проконтролирует с точки зрения фоносемантики готовый перевод. Конечно, талантливый переводчик интуитивно улавливает фоносимволику оригинала и так же интуитивно выстраивает ее на новом языке. И все же машинная помощь не помешает. Пользуются же переводчики словарями. Компьютер в данном случае тоже справочник, только автоматический.
Само собой разумеется, что все это лишь тонкие семантические нюансы, не являющиеся основой перевода, но пренебрегать ими, пожалуй, тоже не следует.
Еще в одной очень важной практической области стоило бы обратить внимание на фоносемантику. Речь идет о публицистике. Выступления ораторов, средства массовой коммуникации, такие, как газеты, телевидение, радио, призваны всеми средствами повышать действенность информации, в том числе и ее воздействие на восприятие читателей и слушателей. Вполне реально было бы в необходимых случаях «просчитывать» фоносемантический ореол текстов, чтобы и этот их аспект был организован надлежащим образом и бил бы в единую с основной семантикой цель.
Уже есть опыт такой обработки рекламных текстов. Компьютеру задавались характеристики, которым должны были удовлетворять рекламные проспекты, девизы, надписи. Машина просчитала весь предложенный материал и выбрала те тексты, фоносемантика которых соответствовала заданным параметрам. Одновременно социологи опробовали тот же исходный материал на информантах и покупателях, не зная о результатах работы компьютера. И что же: мнения людей и компьютера почти во всех случаях совпали — наиболее действенной оказалась «фоносемантически заряженная» реклама. Так что компьютер уже окупает стоимость своей работы, сам зарабатывает себе на хлеб, помогая торговле увеличить выручку.
Читать дальше