умножспис( Параметры, F, Параметры1),
Фиг1 =.. [Тип | Параметры)].
умножспис( [], _, []).
умножспис( [X | L], F, [X1 | L1] ) :-
X1 is F*X, умножспис( L, F, L1).
Наш следующий пример использования предиката ' =..
' связан с обработкой символьных выражений (формул), где часто приходится подставлять вместо некоторого подвыражения другое выражение. Мы определим отношение
подставить( Подтерм, Терм, Подтерм1, Терм1)
следующим образом: если все вхождения Подтерм
'а в Терм
заменить на Подтерм1
, то получится Терм1
. Например:
?- подставить( sin( x), 2*sin( x)*f( sin( x)), t, F ).
F = 2*t*f( t)
Под "вхождением" Подтерм
'а в Терм
мы будем понимать такой элемент Терм
'а, который сопоставим с Подтерм
'ом. Вхождения будем искать сверху вниз. Поэтому цель
?- подставить( а+b, f( а, А+В), v, F).
даст результат
F = f( а, v)
А = а
В = b
а не
F = f( a, v + v)
А = а + b
В = а + b
При определении отношения подставить
нам нужно рассмотреть несколько случаев и для каждого принять свое решение:
если Подтерм
= Терм
, то Терм1
= Подтерм1
;
иначе если Терм
— "атомарный" (не структура),
то Терм1
= Терм
(подставлять нечего),
иначе подстановку нужно выполнить над аргументами Tерм
'a.
Эти правила можно превратить в программу, показанную на рис. 7.3.
Термы, полученные при помощи предиката ' =..
', разумеется, можно использовать и в качестве целей. Это дает возможность программе в процессе вычислений самой порождать и вычислять цели, структура которых не обязательно была известна заранее в момент написания программы. Последовательность целей, иллюстрирующая этот прием, могла бы выглядеть примерно так:
получить( Функтор),
вычислить( Списарг),
Цель =.. [Функтор | Списарг],
Цель
Здесь получить
и вычислить
— некоторые определенные пользователем процедуры, предназначенные для вычисления компонент цели. После этого цель порождается предикатом ' =..
', а затем активизируется при помощи простого указания ее имени Цель
.
% Отношение
%
% подставить( Подтерм, Терм, Подтерм1, Терм1)
%
% состоит в следующем: если все вхождения Подтерм'а в Терм
% заменить на Подтерм1, то получится Терм1.
% Случай 1: Заменить весь терм
подставить( Терм, Терм, Терм1, Терм1) :- !.
% Случай 2: нечего подставлять
подставить( _, Терм, _, Терм) :-
atomic( Терм), !.
% Случай 3: Проделать подстановку в аргументах
подставить( Под, Терм, Под1, Терм1) :-
Терм =.. [F | Арги],
% Выделить аргументы
подспис( Под, Арги, Под1, Арги1),
% Выполнить над ними подстановку
Терм1 =.. [F | Арги1].
подспис( Под, [Терм | Термы], Под1, [Терм1 | Термы1]) :-
подставить( Под, Терм, Под1, Терм1),
подспис( Под, Термы, Под1, Термы1).
Рис. 7.3. Процедура подстановки в терм вместо одного из его подтермов некоторого другого подтерма.
Некоторые реализации Пролога могут содержать требование, чтобы все цели, появляющиеся в программе, по своей синтаксической форме были либо атомами, либо структурами с атомом в качестве главного функтора. Поэтому переменная, вне зависимости от ее текущей конкретизации, может по своей синтаксической форме не подойти в качестве цели. Эту трудность можно обойти при помощи еще одного встроенного предиката call
(вызов), чьим аргументом является цель, подлежащая вычислению. В соответствий с этим предыдущий пример должен быть переписан так:
...
Цель = [Функтор | Списарг],
саll( Цель)
Иногда нужно извлечь из терма только его главный функтор или один из аргументов. В этом случае можно, конечно, воспользоваться отношением ' =..
'. Но более аккуратным и практичным, а также и более эффективным способом будет применение одной из двух новых встроенных процедур: functor
и аrg
. Вот их смысл: цель
functor( Терм, F, N)
истинна, если F
— главный функтор Tepм
'a, а N
— арность F
. Цель
arg( N, Терм, А)
истинна, если А
— N-й аргумент в Терм
'е, в предположении, что нумерация аргументов идет слева направо и начинается с 1. Примеры для иллюстрации:
?- functor( t( f( x), X, t), Фун, Арность).
Читать дальше