Пример 12.3. Использование мьютекса чтения/записи
#include
#include
#include
#include
template
class Queue {
public:
Queue() : // Использовать мьютекс чтения/записи и придать ему приоритет
// записи
rwMutex_(boost::read_write_scheduling_policy::writer_priority) {}
~Queue() {}
void enqueue(const T& x) {
// Использовать блокировку чтения/записи, поскольку enqueue
// обновляет состояние
boost::read_write_mutex::scoped_write_lock writeLock(rwMutex_);
list_.push_back(x);
}
T dequeue() {
// Снова использовать блокировку для записи
boost::read_write_mutex::scoped_write_lock writeLock(rwMutex_);
if (list_.empty())
throw "empty!";
T tmp = list_.front();
list_.pop_front();
return(tmp);
}
T getFront() {
// Это операция чтения, поэтому требуется блокировка только для чтения
boost::read_write_mutex::scoped_read_lock.readLock(rwMutex_);
if (list_.empty())
throw "empty!";
return(list_.front());
}
private:
std::list list_;
boost::read_write_mutex rwMutex_;
};
Queue queueOfStrings;
void sendSomething() {
std::string s;
for (int i = 0, i < 10; ++i) {
queueOfStrings.enqueue("Cyrus");
}
}
void checkTheFront() {
std::string s;
for (int i=0; i < 10; ++i) {
try {
s = queueOfStrings.getFront();
} catch(...) {}
}
}
int main() {
boost::thread thr1(sendSomething);
boost::thread_group grp;
grp.сreate_thread(checkTheFront);
grp.create_thread(checkTheFront);
grp.сreate_thread(checkTheFront);
grp_create_thread(checkTheFront);
thr1.join();
grp.join_all();
}
Здесь необходимо отметить несколько моментов. Обратите внимание, что теперь я использую read_write_mutex.
boost::read_write_mutex rwMutex_;
При использовании мьютексов чтения/записи блокировки тоже выполняются иначе. В примере 12.3, когда мне нужно заблокировать Queueдля записи, я создаю объект класса scoped_write_lock.
boost::read_write_mutex::scoped_write_lock writeLock(rwMutex_);
А когда мне просто требуется прочитать Queue, я использую scoped_read_lock.
boost::read_write_mutex::scoped_read_lock readLock(rwMutex_);
Блокировки чтения/записи удобны, но они не предохраняют вас от серьезных ошибок. На этапе компиляции не делается проверка ресурса, представленного мьютексом rwMutex_, гарантирующая отсутствие изменения ресурса при блокировке только для чтения. Вы сами должны позаботиться о том, чтобы поток мог модифицировать состояние объекта только при блокировке для записи, поскольку компилятор это не будет делать.
Точная последовательность выполнения блокировок определяется политикой их планирования; эту политику вы задаете при конструировании объекта mutex. В библиотеке Boost Threads предусматривается четыре политики.
reader_priority
Потоки, ожидающие выполнения блокировки для чтения, ее получат раньше потоков, ожидающих выполнения блокировки для записи.
writer_priority
Потоки, ожидающие выполнения блокировки для записи, ее получат раньше потоков, ожидающих выполнения блокировки для чтения.
alternating_single_read
Чередуются блокировки для чтения и для записи. Один читающий поток получает возможность блокировки для чтения, когда подходит «очередь» читающих потоков. Эта политика в целом отдает приоритет записывающим потокам. Например, если мьютекс заблокирован для записи и имеется несколько потоков, ожидающих блокировки для чтения, а также один поток, ожидающий блокировки для записи, сначала будет выполнена одна блокировка для чтения, затем блокировка для записи и после нее — все остальные блокировки для чтения. Подразумевается, что за это время не будет новых запросов на блокировку.
alternating_many_reads
Чередуются блокировки для чтения и для записи. Выполняются все блокировки для чтения, когда подходит «очередь» читающих потоков. Другими словами, эта политика приводит к опустошению очереди всех потоков, ожидающих блокировки для чтения, в промежутке между блокировками для записи.
Каждая из этих политик имеет свои достоинства и недостатки, и их влияние будет сказываться по-разному в различных приложениях. Необходимо тщательно подойти к выбору политики, потому что если просто обеспечить приоритет для чтения или записи, это приведет к зависанию, которое я более подробно описываю ниже.
Опасности
При программировании многопоточной обработки возникает три основные проблемы: взаимная блокировка (deadlock), зависание (starvation) и состояния состязания (race conditions — условия гонок). Существуют различные по сложности методы устранения этих проблем, но их рассмотрение выходит за рамки данного рецепта. Я дам описание каждой их этих проблем, чтобы вы знали, чего следует остерегаться, но если вы планируете разработку многопоточного приложения, вам необходимо сначала выполнить некоторое предварительную работу по шаблонам многопоточной обработки.
Читать дальше