Именно по этой причине нельзя рассматривать данную главу как введение в многопоточное программирование. Если вы уже имели опыт многопоточного программирования, но не на C++ или без использования библиотеки Boost Threads, эта глава будет полезна для вас. Однако описание основных принципов многопоточного программирования выходит за рамки этой книги. Если до сих пор вы никогда не занимались многопоточным программированием, по-видимому, вам следует прочитать вводный материал по этой тематике, но такой материал трудно найти, потому что большинство программистов не используют потоки выполнения (хотя, возможно, их и следовало бы применить).
Большая часть документации Boost и некоторые приводимые ниже рецепты при обсуждении классов используют понятия концепции и модели . Концепция — это абстрактное описание чего-то, обычно класса и его поведения, причем не делается никаких предположений относительно реализации. Как правило, сюда входит описание действий при конструировании и уничтожении, а также описание каждого метода с указанием предусловий, параметров и постусловий. Например, концепция мьютекса (Mutex) описывается как нечто допускающее блокирование и разблокирование только одним потоком в данный момент времени. Модель — это конкретная реализация концепции, например класс mutexв библиотеке Boost Threads. Уточнение (refinement) концепции — это некая ее специализация, например ReadWriteMutex, т.е. мьютекс с некоторыми дополнительными возможностями.
Наконец, потоки делают что-то одно из трех: работают, находятся в ожидании чего-то или готовы начать работу, но ничего не ожидают и не выполняют никаких действий. Эти состояния носят названия состояний выполнения (run) , ожидания (wait) и готовности (ready) . Эти термины я использую в последующих рецептах.
Проблема
Требуется создать поток (thread) для выполнения некоторой задачи, в то время как главный поток продолжает свою работу.
Решение
Создайте объект класса threadи передайте ему функтор, который выполняет данную работу. Создание объекта потока приведет к инстанцированию потока операционной системы, который начинает выполнять оператор operator()с вашим функтором (или начинает выполнять функцию, переданную с помощью указателя). Пример 12.1 показывает, как это делается.
Пример 12.1. Создание потока
#include
#include
#include
struct MyThreadFunc {
void operator()() {
// Что-нибудь работающее долго...
}
} threadFun;
int main() {
boost::thread myThread(threadFun); // Создать поток, запускающий
// функцию threadFun
boost.:thread::yield(); // Уступить порожденному потоку квант времени.
// чтобы он мог выполнить какую-то работу.
// Выполнить какую-нибудь другую работу
myThread join(); // Текущий поток (т.е поток функции main) прежде.
// чем завершиться, будет ждать окончания myThread
}
Обсуждение
Создается поток обманчиво просто. Вам необходимо лишь создать объект threadв стеке или в динамической памяти и передать ему функтор, который укажет, с чего начать работу. В данном случае термин «поток» (thread) используется в двух смыслах. Во-первых, это объект класса thread, который является обычным объектом C++. При ссылке на этот объект я буду говорить «объект потока». Кроме того, существует поток выполнения, который является потоком операционной системы, представленным объектом thread. Когда я говорю «поток» (в отличие от названия класса потока, напечатанного моноширинным шрифтом), я имею в виду поток операционной системы.
Теперь перейдем непосредственно к рассмотрению программного кода в примере. Конструктор threadпринимает функтор (или указатель функции), имеющий два аргумента и возвращающий void. Рассмотрим следующую строку из примера 12.1.
boost::thread myThread(threadFun);
Она создает в стеке объект myThread, являющийся новым потоком операционной системы, который начинает выполнять функцию threadFun. В этот момент программный код функции threadFunи код функции main(по крайней мере, теоретически) выполняются параллельно. Конечно, на самом деле они могут выполняться не параллельно, поскольку ваша машина может иметь только один процессор, и в этом случае параллельная работа невозможна (благодаря недавно разработанным архитектурам процессоров это утверждение не совсем точное, но в настоящий момент я не буду принимать в расчет двухъядерные процессоры и т.п.). Если у вас только один процессор, то операционная система предоставит каждому созданному вами потоку квант времени в состоянии выполнения, перед тем как приостановить его работу. Так как эти кванты времени могут иметь различную величину, никогда нельзя с уверенностью сказать, какой из потоков раньше достигнет определенной точки. Именно в этой особенности многопоточного программирования заключается его сложность: состояние многопоточной программы недетерминировано . При выполнении несколько раз одной и той же многопоточной программы можно получить различные результаты. Темой рецепта 12.2 является координация ресурсов, используемых несколькими потоками.
Читать дальше