Впоследствии идею Лейбница об использовании двоичной системы счисления в вычислительных машинах забыли на 250 лет, и только в 1931 году цифровые шестеренки с восемью позициями (2 3= 8) запатентует во Франции Р. Вальта. В 1936 году он покажет преимущества двоичных вычислительных устройств. Вслед за Вальта то же самое сделают Л. Куффиньяль во Франции и Э. Филлипс в Англии.
Как Лейбниц успел сделать так много в различных областях науки? Просто он имел способность работать в любом месте, в любое время и при любых условиях. Он много читал, записывал и постоянно думал. Он не имел фиксированного времени для приема пищи, но когда в ходе его занятий возникала удобная возможность, он отвлекался, чтобы поесть. Он бездействовал немного, часто проводил ночь в своем кресле, а иногда и в течение нескольких дней. Это позволяло ему совершать огромную работу, но это вело и к болезни.
Современников Лейбница поражали его фантастическая эрудиция, почти сверхъестественная память и удивительная работоспособность.
Но не эти качества определяли гениальность Лейбница. Главным было его умение в любой проблеме увидеть, схватить то, что составляло ее сущность, основу. Он, как никто другой, умел обобщать. Эта ненасытная потребность обобщения заставляла его всю жизнь искать универсальный метод научного познания.
После создания арифметической машины, в 1675 году, Лейбниц возвратился к изучению математики и посвятил все свое свободное время созданию основ дифференциального и интегрального исчисления.
Лейбниц стал служить в Немецком доме Брунсвик историком, библиотекарем и главным советником. В 1687–1690 годах исторические исследования привели его в Австрию и Италию. Во время своего пребывания в Италии Лейбниц посетил Рим и был приглашен Папой Римским на место библиотекаря в Ватикане. Так как эта должность требовала принятия католической веры, Лейбниц отклонил предложение Папы. Вместо этого он предпринял попытку воссоединения протестантских и католических церквей, которые раскололись ещё в начале столетия. Но после некоторых усилий Лейбниц был вынужден забыть об этом проекте.
В более поздние годы Лейбниц обратился к философии, и завершающим философским его сочинением стала «Монадология». Последнее, значительное событие в его жизни произошло в 1700 году, в Берлине, где он организовал Берлинскую Академию Наук и стал ее первым президентом.
Последние годы Лейбница были омрачены болезнью и непониманием окружающих, он страдал подагрой. 14 ноября 1716 года, в возрасте 70 лет, он скончался. Его смерть осталась незамеченной в Лондоне и Берлине, и единственным человеком, проводившим его в последний путь, был его секретарь. Где он похоронен — неизвестно.
Однако последующие поколения по достоинству оценили заслуги Лейбница. И сегодня, конечно, Лейбниц предстает перед нами как один из самых великих умов своего времени.
Джордж Буль
Отец булевой алгебры
Чистая математика была открыта Булем в работе, которую он назвал «Законы мышления».
Бертран Рассел

Джордж Буль
Все механизмы, шестеренки, вакуумные лампы и печатные платы — все это еще не компьютер.
Важны также разработки Паскаля и Лейбница, о которых мы вам уже рассказали, и Бэббиджа, о достижениях которого мы расскажем в следующей главе. Эти разработки требовали первоначальной теории логики для того, чтобы, в конечном счете, вдохнуть жизнь в машины, которые «думают».
Расширив общий метод Лейбница, сформулированный на 188 лет раньше, в котором все истинные причины были сведены к виду вычислений, английский математик Д. Буль в 1854 году заложил основу того, что мы сегодня знаем как математическую логику, опубликовав работу «Исследование законов мышления».
В этой работе, изданной, когда ему было 39 лет, Буль свел логику к чрезвычайно простому типу алгебры, алгебры логики высказываний, которая представляла собой систему символов и правил, применяемую к различным объектам (числам, буквам, предложениям).
Его теория логики, основанная на трех основных действиях — AND (и), OR (или), NOT (не), — должна была стать в XX веке основой для разработки переключающих телефонных линий и проекта ЭВМ. Так же, как и идеями Лейбница, булевой алгеброй пренебрегали в течение многих лет после того, как она была создана.
Важность работы, признанной логиком де Морганом, современником Буля, заключалась в следующем: «Символические процессы алгебры, созданные как инструменты числового вычисления, компетентно выражают каждый закон мысли и обладают грамматикой и словарем всего того, что содержит систему логики. Мы это и не предполагали, пока это не было доказано в „Законах мышления“».
Читать дальше