Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект

Здесь есть возможность читать онлайн «Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Альпина нон-фикшн, Жанр: Прочая околокомпьтерная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Совместимость. Как контролировать искусственный интеллект: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Совместимость. Как контролировать искусственный интеллект»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В массовом сознании сверхчеловеческий искусственный интеллект — технологическое цунами, угрожающее не только экономике и человеческим отношениям, но и самой цивилизации. Конфликт между людьми и машинами видится неотвратимым, а его исход предопределенным. Выдающийся исследователь ИИ Стюарт Рассел утверждает, что этого сценария можно избежать.
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.

Совместимость. Как контролировать искусственный интеллект — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Совместимость. Как контролировать искусственный интеллект», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пожалуй, самый простейший путь к пониманию IRL состоит в следующем: наблюдатель отталкивается от некоего общего предположения об истинной функции вознаграждения и уточняет это предположение по мере дальнейшего наблюдения за поведением. На языке Байесова подхода [258] Понимание обратного обучения с подкреплением как Байесова обновления: Deepak Ramachandran and Eyal Amir, «Bayesian inverse reinforcement learning», in Proceedings of the 20th International Joint Conference on Artificial Intelligence , ed. Manuela Veloso (AAAI Press, 2007). : начнем с априорной вероятности возможных функций вознаграждения и будем уточнять это распределение вероятностей по мере появления данных В. Предположим, например, что робот Робби наблюдает за человеком Гарриет и гадает, в какой степени она предпочитает место у прохода месту у иллюминатора. Первоначально он находится в неопределенности по этому вопросу. Теоретически Робби может рассуждать так: «Если бы Гарриет действительно хотела сидеть ближе к проходу, то изучила бы схему расположения мест, чтобы узнать, доступно ли место у прохода, вместо того чтобы согласиться на место у иллюминатора, которое предложила ей авиакомпания. Однако она этого не сделала, хотя, вероятно, заметила, что это место у иллюминатора, и вроде бы не торопилась. Следовательно, сейчас значительно более вероятно, что ей все равно, где сидеть, или она даже предпочитает место у прохода».

Самым потрясающим примером IRL в действии является работа моего коллеги Питера Эббила по обучению исполнению фигур высшего пилотажа на вертолете [259] Как научить вертолет летать и выполнять фигуры высшего пилотажа: Adam Coates, Pieter Abbeel, and Andrew Ng, «Apprenticeship learning for helicopter control», Communications of the ACM 52 (2009): 97–105. . Опытные пилоты могут заставить модели вертолетов делать потрясающие трюки: петли, спирали, маятникообразные движения и т. д. Оказалось, что попытки копировать действия человека не приносят особого результата из-за невозможности точно воспроизвести условия — если повторять те же последовательности управляющих действий в других обстоятельствах, это может закончиться катастрофой. Вместо этого алгоритм изучает, чего хочет пилот, в форме ограничений траектории, движение по которой может осуществить. Этот подход дает даже лучшие результаты, чем у эксперта, поскольку у людей более медленная реакция и они постоянно совершают мелкие ошибки, которые вынуждены исправлять.

Игры в помощника

Метод IRL уже является важным инструментом создания эффективных ИИ-систем, но в нем делается ряд упрощающих допущений. Первое — что робот воспримет функцию вознаграждения, когда изучит ее путем наблюдения за человеком, следовательно, сможет выполнять то же задание. Это прекрасно работает в случае управления автомобилем или вертолетом, но не относится к питью кофе: робот, наблюдающий за моим утренним ритуалом, усвоит, что я (иногда) хочу кофе, но не научится сам его хотеть. Решить эту проблему легко — нужно лишь сделать так, чтобы робот ассоциировал предпочтения с человеком, а не с самим собой.

Второе упрощающее допущение IRL состоит в том, что робот наблюдает за человеком в ситуации «единственного принимающего решения агента». Например, предположим, что робот учится в медицинском институте, чтобы стать хирургом, наблюдая за специалистом. Алгоритмы IRL предполагают, что человек выполняет операцию обычным оптимальным способом, как если бы робота рядом не было. Однако это не так: хирург мотивирован помочь роботу (как и любому другому студенту) обучиться хорошо и быстро и соответственным образом меняет свое поведение. Он может объяснять свои действия, обращать внимание на ошибки, которые следует избегать, — скажем, делать слишком глубокий разрез или шить слишком туго, — может описывать манипуляции в нештатной ситуации, если во время операции что-нибудь случилось. Никакие из этих действий не имеют смысла, если выполняешь операцию без студентов, и алгоритмы IRL не смогут понять, какие предпочтения за ними стоят. Поэтому мы должны будем обобщить IRL, перейдя от ситуации одного агента к ситуации с множественными агентами, а именно — создать алгоритмы обучения, работающие в случае, когда человек и робот являются частью общей среды и взаимодействуют друг с другом.

Человек и робот в одной среде — это пространство теории игр, как в том примере, где Алиса била пенальти в ворота Боба. В этой первой версии теории мы предполагаем, что человек имеет предпочтения и действует соответственно им. Робот не знает предпочтений человека, но все равно хочет их удовлетворить. Мы будем называть любую такую ситуацию игрой в помощника , поскольку предполагается, что робот по определению должен помогать человеку [260] Первоначальное название игры в ассистента — игра на кооперацию в рамках обратного обучения с подкреплением , или CIRL. См.: Dylan Hadfield-Menell et al., «Cooperative inverse reinforcement learning», in Advances in Neural Information Processing Systems 29, ed. Daniel Lee et al. (2016). .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Совместимость. Как контролировать искусственный интеллект»

Представляем Вашему вниманию похожие книги на «Совместимость. Как контролировать искусственный интеллект» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Искусственный Интеллект RT - Заповедник мертвецов
Искусственный Интеллект RT
Отзывы о книге «Совместимость. Как контролировать искусственный интеллект»

Обсуждение, отзывы о книге «Совместимость. Как контролировать искусственный интеллект» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x