Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект

Здесь есть возможность читать онлайн «Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Альпина нон-фикшн, Жанр: Прочая околокомпьтерная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Совместимость. Как контролировать искусственный интеллект: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Совместимость. Как контролировать искусственный интеллект»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В массовом сознании сверхчеловеческий искусственный интеллект — технологическое цунами, угрожающее не только экономике и человеческим отношениям, но и самой цивилизации. Конфликт между людьми и машинами видится неотвратимым, а его исход предопределенным. Выдающийся исследователь ИИ Стюарт Рассел утверждает, что этого сценария можно избежать.
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.

Совместимость. Как контролировать искусственный интеллект — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Совместимость. Как контролировать искусственный интеллект», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Исследование будет вестись на основе предположения, что любой аспект обучения или любой другой признак интеллекта можно, теоретически, описать настолько точно, что возможно будет создать машину, его воспроизводящую. Будет предпринята попытка узнать, как научить машины использовать язык, формировать абстрактные понятия и концепции, решать задачи такого типа, которые в настоящее время считаются прерогативой человека, и совершенствоваться. Мы считаем, что по одной или нескольким из этих проблем возможен значительный прогресс, если тщательно подобранная группа ученых будет совместно работать над ними в течение лета.

Незачем говорить, что времени потребовалось значительно больше: мы до сих пор трудимся над всеми этими задачами.

В первые лет десять после встречи в Дартмуте в разработке ИИ произошло несколько крупных прорывов, в том числе создание алгоритма универсального логического мышления Алана Робинсона [2] Робинсон разработал алгоритм разрешения , который может, при наличии времени, доказать любое логическое следствие из комплекса логических утверждений первого порядка. В отличие от предыдущих алгоритмов, он не требует преобразования в пропозиционную логику. J. Alan Robinson, «A machine-oriented logic based on the resolution principle», Journal of the ACM 12 (1965): 23–41. и шахматной программы Артура Самуэля, которая сама научилась обыгрывать своего создателя [3] Артур Самуэль, американский первопроходец компьютерной эры, начал карьеру в IBM. В статье, посвященной его работе с шашками, впервые был использован термин машинное обучение , хотя Алан Тьюринг еще в 1947 г. говорил о «машине, способной учиться на опыте». Arthur Samuel, «Some studies in machine learning using the game of checkers», IBM Journal of Research and Development 3 (1959): 210−29. . В работе над ИИ первый пузырь лопнул в конце 1960-х гг., когда начальные результаты в области машинного обучения и машинного перевода оказались не соответствующими ожиданиям. В отчете, составленном в 1973 г. по поручению правительства Великобритании, делался вывод: «Ни по одному из направлений этой сферы исследований совершенные на данный момент открытия не имели обещанных радикальных последствий» [4] Так называемый Отчет Лайтхилла привел к отмене финансирования исследования ИИ везде, кроме Эдинбургского и Сассекского университетов: Michael James Lighthill, «Artificial intelligence: A general survey», in Artificial Intelligence: A Paper Symposium (Science Research Council of Great Britain, 1973). . Иными словами, машины просто не были достаточно умными.

К счастью, в 11-летнем возрасте я не подозревал о существовании этого отчета. Через два года, когда мне подарили программируемый калькулятор Sinclair Cambridge, я просто захотел сделать его разумным. Однако при максимальной длине программы в 36 строк «Синклер» был недостаточно мощным для ИИ человеческого уровня. Не смирившись перед неудачей, я добился доступа к гигантскому суперкомпьютеру CDC 6600 [5] CDC 6600 занимал целую комнату, а его стоимость была эквивалентна $20 млн. Для своего времени он был невероятно мощным, хотя и в миллион раз менее мощным, чем iPhone. в Королевском колледже Лондона и написал шахматную программу — стопку перфокарт 60 см высотой. Не слишком толковую, но это было не важно. Я знал, чем хочу заниматься.

К середине 1980-х гг. я стал профессором в Беркли, а ИИ переживал бурное возрождение благодаря коммерческому потенциалу так называемых экспертных систем. Второй «ИИ-пузырь» лопнул, когда оказалось, что эти системы не отвечают многим задачам, для которых предназначены. Опять-таки машины просто не были достаточно умными. В сфере ИИ настал ледниковый период. Мой курс по ИИ в Беркли, ныне привлекающий 900 с лишним студентов, в 1990 г. заинтересовал всего 25 слушателей.

Сообщество разработчиков ИИ усвоило урок: очевидно, чем умнее, тем лучше, но, чтобы этого добиться, нам нужно покорпеть над основами. Появился выраженный уклон в математику. Были установлены связи с давно признанными научными дисциплинами: теорией вероятности, статистикой и теорией управления. Зерна сегодняшнего прогресса были посажены во время того «ледниковья», в том числе начальные разработки крупномасштабных систем вероятностной логики и того, что стало называться глубоким обучением.

Около 2011 г. методы глубокого обучения начали демонстрировать огромные достижения в распознавании речи и визуальных объектов, а также машинного перевода — трех важнейших нерешенных проблем в исследовании ИИ. В 2016 и 2017 гг. программа AlphaGo, разработанная компанией DeepMind, обыграла бывшего чемпиона по игре го Ли Седоля и действующего чемпиона Кэ Цзе. По ранее сделанным оценкам некоторых экспертов, это событие могло произойти не раньше 2097 г. или вообще никогда [6] После победы DeepBlue над Каспаровым по крайней мере один комментатор предсказал, что в го подобное произойдет не раньше чем через сто лет: George Johnson, «To test a powerful computer, play an ancient game », The New York Times , July 29, 1997. .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Совместимость. Как контролировать искусственный интеллект»

Представляем Вашему вниманию похожие книги на «Совместимость. Как контролировать искусственный интеллект» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Искусственный Интеллект RT - Заповедник мертвецов
Искусственный Интеллект RT
Отзывы о книге «Совместимость. Как контролировать искусственный интеллект»

Обсуждение, отзывы о книге «Совместимость. Как контролировать искусственный интеллект» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x