Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект

Здесь есть возможность читать онлайн «Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Альпина нон-фикшн, Жанр: Прочая околокомпьтерная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Совместимость. Как контролировать искусственный интеллект: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Совместимость. Как контролировать искусственный интеллект»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В массовом сознании сверхчеловеческий искусственный интеллект — технологическое цунами, угрожающее не только экономике и человеческим отношениям, но и самой цивилизации. Конфликт между людьми и машинами видится неотвратимым, а его исход предопределенным. Выдающийся исследователь ИИ Стюарт Рассел утверждает, что этого сценария можно избежать.
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.

Совместимость. Как контролировать искусственный интеллект — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Совместимость. Как контролировать искусственный интеллект», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Обучение на примерах

Самая распространенная форма машинного обучения называется контролируемым обучением, или обучением с учителем . Алгоритм контролируемого обучения получает набор упражнений, для каждого из которых указан правильный ответ, и должен сформировать гипотезу о том, в чем состоит правило. Обычно система контролируемого обучения стремится оптимизировать соглашение между гипотезой и учебными образцами. Часто также вводится штраф за более сложную, чем это необходимо, гипотезу, в соответствии с принципом Оккама.

Проиллюстрируем это на задаче изучения допустимых ходов в го Если вы знаете - фото 24

Проиллюстрируем это на задаче изучения допустимых ходов в го. (Если вы знаете правила го, вам будет проще следить за ходом рассуждений, если нет — легче проникнуться сочувствием к обучающейся программе.) Допустим, алгоритм начинает с гипотезы:

для всехвременных шагов t и для всехместоположений l

допустимо выставить камень на местоположение l в момент времени t .

В позиции, представленной на рис. 22, ход черных. Алгоритм пробует ход А — все хорошо. Б и В тоже. Затем программа пробует совершить ход Г, поставив камень поверх уже лежащего белого камня: он недопустим. (В шахматах или нардах так можно было бы ходить, именно так «съедаются» фигуры.) Ход Д, поверх черного камня, также недопустим. (Недопустим и в шахматах, но допустим в нардах.) На этих пяти учебных примерах алгоритм может построить следующую гипотезу:

для всехвременных шагов t и для всехместоположений l

если l не занято в момент времени t ,

тодопустимо выставить камень на местоположение l в момент времени t .

Затем программа пробует ход Е и, к своему удивлению, обнаруживает, что он недопустим. После несколько фальстартов она приходит к выводу:

для всехвременных шагов t и для всехместоположений l

если l не занято в момент времени t

и l не окружено камнями противника,

тодопустимо выставить камень на местоположение l в момент времени t .

(Иногда в го это правило называется запретом самоубийства .) Наконец, она проверяет ход Ж, который в этом случае оказывается допустимым. Почесав затылок и, возможно, еще немного поэкспериментировав, программа останавливается на гипотезе, что Ж годится, несмотря на то что камень окружен, потому что захватывает белый камень на Г и сразу же становится не окруженным.

Как видно из постепенного развития правил, обучение происходит через последовательность модификаций гипотезы, так чтобы она соответствовала наблюдаемым примерам. Обучающийся алгоритм делает это с легкостью. Исследователи машинного обучения разработали всевозможные остроумные алгоритмы быстрого поиска хороших гипотез. В данном случае алгоритм ведет поиск в пространстве логических выражений, представляющих правила го, но гипотезы могут являться и алгебраическими выражениями, представляющими физические законы, вероятностными Байесовыми сетями, представляющими заболевания и симптомы, или даже компьютерными программами, определяющими сложное поведение какой-то другой машины.

Второй важный момент состоит в том, что даже хорошая гипотеза может быть неверной . На самом деле, вышеприведенная гипотеза неверна , даже после внесения исправления о том, что ход Ж является допустимым. Она должна включать правило ко , или отсутствия повторов . Например, если белые только что захватили черный камень на Ж, сделав ход на Г, то черные не могут сделать перезахват, пойдя на Ж, поскольку создается та же позиция. Обратите внимание, что это правило резко отличается от того, что программа выучила к настоящему моменту, поскольку означает, что допустимость не может определяться текущей позицией, необходимо помнить и предыдущие.

Шотландский философ Дэвид Юм заметил в 1748 г., что индуктивное рассуждение — а именно от конкретного наблюдения к общим принципам, — не может гарантировать истинности вывода [360]. Современная теория статистического обучения не требует гарантий абсолютной истинности, а лишь гарантию того, что найденная гипотеза, вероятно, является приблизительно правильной [361]. Обучающемуся алгоритму может «не повезти» наткнуться на нерепрезентативную выборку, например он так и не попробует сделать ход на Ж, считая его недопустимым. Возможно также, что он не сумеет предсказать какие-нибудь редкие пограничные случаи, скажем, охватываемые какими-то более сложными и редко всплывающими разновидностями правила отсутствия повторов [362]. Однако, поскольку Вселенная проявляет определенную степень регулярности, крайне маловероятно, чтобы алгоритм выработал чрезвычайно плохую гипотезу, потому что такая гипотеза почти наверняка была бы отброшена одним из экспериментов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Совместимость. Как контролировать искусственный интеллект»

Представляем Вашему вниманию похожие книги на «Совместимость. Как контролировать искусственный интеллект» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Искусственный Интеллект RT - Заповедник мертвецов
Искусственный Интеллект RT
Отзывы о книге «Совместимость. Как контролировать искусственный интеллект»

Обсуждение, отзывы о книге «Совместимость. Как контролировать искусственный интеллект» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x