Наука: Спинтроника: от «микро» к «нано»
Авторы: Александр Самардак asamardak@gmail.com, Алексей Огнев
Ровно год назад в «КТ» #575 питерский физик Георгий Жувикин подробно рассказывал о целом спектре исследовательских направлений, обеспечивающих развитие компьютерной электроники на среднюю и дальнюю перспективу. Одна из главных тем здесь — спинтроника, с помощью которой уже создан ряд промышленных технологий. Публикуемая статья кратко напомнит читателям об основных принципах спинтроники и познакомит с планами и новыми достижениями в этой области. — Л.Л.-М.
Александр Самардак — доцент кафедры электроники Дальневосточного государственного университета; Алексей Огнев — заведующий лабораторией тонкопленочных технологий того же университета. Научные интересы обоих авторов — многослойные пленки с квантово-размерными эффектами, спинтроника и магнетизм.
Многие, несомненно, обращали внимание на то, что в последние несколько лет в СМИ все реже встречается термин «микроэлектроника». Гораздо чаще мы слышим и читаем о нанофизике, наноэлектронике, нанотехнологиях. Теперь каждый школьник знает, что приставка «нано» уменьшает обычный метр в миллиард раз. Однако не всем известны принципы функционирования наноустройств, таких как считывающие головки жестких дисков компьютера или сенсоры магнитного поля. Подобные устройства были бы невозможны без развития спинтроники — молодой, но уже весьма авторитетной науки, на плечи которой возложена важная миссия использования квантовых эффектов в сверхэкономичных и сверхбыстрых спиновых устройствах недалекого будущего.
Термин «спинтроника» произошел от англоязычного выражения «spin electronics» («спиновая электроника»; иногда ее называют и «магнитоэлектроникой»). Спинтроника — область науки, изучающая взаимодействие собственных магнитных моментов электронов (спинов) с электромагнитными полями[Здесь и далее авторы дают некоторые физические формулировки в упрощенном виде. — Л.Л.-М.] и разрабатывающая на основе обнаруженных явлений и эффектов спинэлектронные приборы и устройства. Но не будем спешить и последовательно рассмотрим фундаментальные аспекты темы.
Начнем с понятия спина. В теории магнетизма считается, что электрон обладает квантовым свойством — спином, из-за чего он ведет себя подобно стрелке компаса, вращающейся вокруг своей оси и соединяющей его (электрона) южный и северный полюса. Спины электронов могут быть ориентированы в направлениях, которые обычно называют «спин-вверх» (мажорные спины) и «спин-вниз» (минорные спины, см. рис. 1).
Если поместить электроны в магнитное поле, то их спины выстроятся вдоль направления поля. При этом они будут прецессировать (определенным образом вращаться) вокруг силовых линий — это явление можно сравнить с орбитальной прецессией нашей планеты (рис. 2). Если выключить поле, прецессия спина прекращается и его ориентация фиксируется. Другими словами, используя эффект прецессии, можно менять спиновое состояние электрона и тем самым изменять бит информации, переносимый электроном, с логического "0" на "1" и обратно.
Отметим, что впервые в мире спин отдельного электрона «рассмотрели» ученые IBM Research Division (США), и произошло это всего год назад. Для столь прецизионной задачи они использовали так называемую магнитную резонансную силовую микроскопию (magnetic resonance force microscopy, MRFM). Но интерес исследователей к спиновой электронике возник гораздо раньше, в 1988 году, в связи с открытием Бэйбичем (M. N. Baibich ) эффекта гигантского магнитосопротивления в многослойных (количество слоев менялось от 3 до 50) магнитных наноструктурах Fe/Cr, суммарная толщина которых составляла около 100 нм. Было обнаружено, что сопротивление многослойной структуры Fe/Cr, в смежных магнитных слоях которой в отсутствие поля векторы намагниченности выстроены антипараллельно, уменьшается более чем на 50% под воздействием внешнего магнитного поля. Так как уменьшение сопротивления было столь велико, ученые назвали этот эффект гигантским магнитосопротивлением (ГМС) (такое аномальное поведение сопротивления обусловлено различиями в поведении электронов «спин-вверх» и «спин-вниз» в указанных наноструктурах). Открытие ГМС позволило создать высокоточные сенсоры магнитного поля, датчики углового вращения и, самое главное, считывающие головки жестких дисков. Первые считывающие ГМС-головки были выпущены в 1997 году компанией IBM и в настоящее время используются практически во всех жестких дисках.
Читать дальше