Компьютерра - Журнал «Компьютерра» № 20 от 30 мая 2006 года

Здесь есть возможность читать онлайн «Компьютерра - Журнал «Компьютерра» № 20 от 30 мая 2006 года» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая околокомпьтерная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Журнал «Компьютерра» № 20 от 30 мая 2006 года: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Журнал «Компьютерра» № 20 от 30 мая 2006 года»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Журнал «Компьютерра» № 20 от 30 мая 2006 года — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Журнал «Компьютерра» № 20 от 30 мая 2006 года», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
В античном мире не было проблем с соответствием между математическим и - фото 31

В античном мире не было проблем с соответствием между математическим и физическим аппаратами: материалистические теории древних греков были наивными, умозрительными и математического обоснования не требовали, а вершина математической мысли греков — идеи Архимеда — к физическим теориям отношения не имели и предназначались для нужд геометрии.

Однако уже начиная с Нового времени, математика и физика не могут жить друг без друга. В самом буквальном смысле: Ньютон разработал матанализ именно как математический аппарат для своих физических открытий и даже философских идей. Кстати, сэр Исаак был очень недоволен Лейбницем, который сделал анализ понятным, доступным и алгоритмическим, — по мнению Ньютона, высшая математика должна была быть эзотеричной[Я уж молчу про анализ Ферма, основанный на алгебраической бесконечно малой, о котором нужно рассказывать отдельно]. Ньютон, по обыкновению того времени, зашифровал свое «научное завещание» в латинской анаграмме. Единственная разумная расшифровка этой анаграммы выглядит примерно так: «Полезно решать дифференциальные уравнения». Следующие два века действительно прошли под знаком математического анализа и дифференциальных уравнений — мир представлялся французским математикам, лидерам тогдашней науки, гигантской системой дифференциальных уравнений. Стоит только решить ее, и развитие Вселенной будет предсказано точно и достоверно. К этому мировоззрению относится и гордое лапласовское «В этой гипотезе я не нуждался» в ответ на замечание Наполеона о том, что система мира Лапласа не предусматривает Бога.

Во второй половине девятнадцатого века маятник качнулся в другую сторону. Развитие математики несколько опередило развитие физических теорий. Самый яркий и широко известный пример — неевклидовы геометрии Лобачевского, Бойяи, Гаусса и позднее примкнувшего к ним Римана. Поначалу эти теории всего лишь закрыли вопрос с пятым постулатом Евклида[Пятый постулат равносилен утверждению, что через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной. Евклид сформулировал его запутанно и многословно (в отличие от других, кристально ясных постулатов). Многие математики потратили кучу сил и времени на попытки вывода пятого постулата из остальных постулатов евклидовой геометрии], продемонстрировав, что он не выводится из остальных аксиом, — результат интересный, но вряд ли сам по себе имеющий хоть какое-то прикладное значение. Но впереди был Эйнштейн, который, опираясь на работы классика геометрии Минковского, показал, что Вселенная, на самом деле, имеет переменную кривизну, а школьная евклидова геометрия, увы, всего лишь абстракция.

Затем существующей математики еще долго хватало для того, чтобы описывать физические теории. Так, квантовая механика и основанные на ней теории (например, теория суперструн) пользуются заранее разработанными разделами математики (в частности, теорией групп и функциональным анализом).

Проблемы с квантовой теорией Янга-Миллса — это мяч, который снова попал на математическое поле. Физика требует от математики теории, которая описывала бы накопленные физиками идеи и соотношения, а математика пока не может дать подходящего аппарата.

Взаимодействия между любыми природными объектами (телами, частицами, волнами) делятся на четыре типа: гравитационное, электромагнитное, сильное и слабое. В физике не прекращались попытки создать теорию, которая бы объясняла все эти взаимодействия, так называемую общую теорию поля. Теория Янга-Миллса — это математический язык, который позволил физикам описать три из четырех основных сил природы (гравитация пока не поддается, так что об общей теории поля говорить рано).

Янг Чжэньнин (Chen Ning Yang) и Роберт Миллс (Robert Mills) в 1954 году опубликовали небольшую статью, которая до сих пор служит основой квантовой теории поля. О том, что такое теория поля, мы еще поговорим, а сейчас зададимся вопросом: что же отличает квантовые теории от классических? В классике основной объект изучения — частица или тело. Тела взаимодействуют друг с другом. Взаимодействие (как принято считать еще со времен Ньютона) осуществляется посредством полей, которые создаются частицами и воздействуют на другие частицы. Например, заряженная частица создает электромагнитное поле, частица с ненулевой массой — гравитационное. Отметим и одну из ключевых идей физики, как классической, так и квантовой: частица эквивалентна совокупности полей, которые она создает, ведь любое взаимодействие с другими частицами производится посредством этих полей; с точки зрения физики, рассматривать поля, порожденные частицей, — то же, что рассматривать саму частицу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Журнал «Компьютерра» № 20 от 30 мая 2006 года»

Представляем Вашему вниманию похожие книги на «Журнал «Компьютерра» № 20 от 30 мая 2006 года» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Журнал «Компьютерра» № 20 от 30 мая 2006 года»

Обсуждение, отзывы о книге «Журнал «Компьютерра» № 20 от 30 мая 2006 года» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x