Ученым удалось придумать новую гибкую конструкцию решетки, которая способна изменять свой период на 32 процента, то есть в 150 раз больше, чем у лучших образцов известных перестраиваемых дифракционных решеток. Устройство представляет собой гибкую гофрированную мембрану толщиной в одну десятую миллиметра, снабженную парой электродов и покрытую тонким слоем золота для увеличения отражения. Мембрана сделана из специального полимера — искусственного мускула, который сокращается, если на электроды подать напряжение. Сокращение решетки изменяет угол, на который отражается тот или иной цвет. Остается поставить перед решеткой экран с отверстием, и пиксел с изменяемым чистым цветом готов. Однако поскольку многие цвета в природе являются суммой трех тонов, в каждой точке экрана все равно придется разместить по три миниатюрных дифракционных решеточки.
Пока ученые изготовили только простейший прототип экрана из десяти пикселов диаметром по 80 мкм. И управляющее пиксельной мускулатурой напряжение неприемлемо велико — аж несколько киловольт (недавно его удалось снизить до трехсот вольт). Так что пока новая революционная технология станет доступной, пройдет еще не один год, и сама конструкция перестраиваемых пикселов вполне может измениться. Авторы называют срок около восьми лет, и это, пожалуй, весьма оптимистичная оценка. ГА
Машины на кончике иглы
Еще одно неожиданное применение углеродным нанотрубкам нашла объединенная команда исследователей из нескольких европейских университетов. Им удалось изготовить в пять раз более скользкий материал, нежели тефлон.
Перед учеными стояла задача максимально уменьшить трение, которое часто мешает работать и обычным машинам, но становится настоящим бедствием, если механизмы имеют микроскопические размеры. Ведь действующие в них силы уменьшаются пропорционально размерам, а силы трения, возникающие из-за сцепления молекул трущихся поверхностей, остаются на прежнем уровне. Не помогает тут и обычная смазка, которую очень неудобно использовать в микромашинах.
Исследователи решили применить углеродные нанотрубки, уже нашедшие себе массу разнообразных профессий. На поверхности кремния с помощью химического осаждения паров вырастили «лес» из вертикально стоящих трубок толщиной сто и высотой тысячу нанометров. Трубки располагались на расстоянии около ста нанометров друг от друга.
Получившуюся «щетину» сравнили с поверхностью золота, кремния, алмаза и тефлона. Для этого бусинки из полистирола диаметром пять микрон закрепили на микроскопических штангах и стали перемещать вдоль поверхности. Оказалось, что сила трения по такому ежу в пять с половиной раз меньше, чем по тефлону, и в семь раз меньше, чем по золоту. Ученые объяснили это тем, что бусинки касались лишь кончиков углеродных «иголок», оставаясь большей частью в «подвешенном» состоянии. Снижение площади контакта и уменьшило трение.
Другой побочной профессией углеродного наноежа может стать перемещение органических нановолокон — почти так же, как сено поддевают вилами. Это сразу решит массу проблем с манипулированием полезных для микроэлектроники, но слишком нежных и ломких в использовании волокон. ГА
Послушный спин
Кремниевый чип, способный работать со спином одного-единственного электрона, который реализует единицу квантовой информации (кубит), создали ученые в Дельфтском технологическом университете в Нидерландах. Это еще один важный шаг на тернистом пути к созданию вожделенных и пока иллюзорных квантовых компьютеров.
Спин, или собственный магнитный момент, электрона давно считался заманчивым кандидатом на физическую реализацию единицы квантовой информации. Электрон может находиться в состоянии «спин вверх» (логическая единица), «спин вниз» (логический ноль), а также в квантовой суперпозиции этих состояний. Но с кубитом надо еще уметь работать. Его нужно устанавливать в правильное начальное состояние, «поворачивать» на заданный угол и измерять его состояние в конце вычислений. Ученые уже давно умеют делать это с самыми разными физическими реализациями кубитов в виде поляризованных фотонов, спинов атомных ядер, ионов в ловушке и ряда других, порой экзотических, квантовых объектов. Однако самый привычный для электроники объект — электрон — до сих пор выпадал из этого ряда. Меж тем электрон привлекает ученых еще и тем, что состояние его спина сравнительно устойчиво по отношению к внешнему шуму, который быстро «портит» нежную квантовую информацию.
Читать дальше