На конференциях нейроученых мне нравится обходить зал и просить каждого высказать свое мнение о том, когда у нас будет работающая теория кортекса. Некоторые люди — меньше 5 процентов — говорят «никогда» или «у нас она уже есть» (неожиданный ответ). Другие 5 процентов говорят «через 10 лет». Половина оставшихся говорят от 10 до 50 лет, или «в течение моей жизни». Оставшиеся говорят от 50 до 200 лет, или «уже после моей жизни». Я на стороне оптимистов. Мы в течение десятилетий жили в «медленном» периоде, так что многим людям кажется, что прогресс в теоретической нейронауке и интеллектуальных машинах окончательно застрял. Опираясь на прогресс последних 50 лет естественно предположить, что мы никогда не приблизимся к ответу. Но я верю, что мы на поворотной точке и прогресс тронется с места.
Возможно ускорить будущее, чтобы приблизить поворотную точку. Одна из целей этой книги убедить вас, что при наличии корректных теоретических основ мы можем добиться ускоренного прогресса в понимании кортекса — что с моделью «память-предсказание» в качестве руководства мы можем дешифровать детали того, как работает мозг и наше мышление. Это знание, необходимое для построения интеллектуальных машин. Если это верная модель, прогресс может вскоре продолжиться.
Так что хотя я не могу точно предсказать, когда эра интеллектуальных машин станет реальность, я думаю, что если достаточное количество людей возьмутся за решение проблемы сегодня, мы сможем создать полезный прототип и эмулятор кортекса всего за несколько лет. В течение десяти лет, я надеюсь, интеллектуальные машины станут одной из самых горячих областей технологии и науки. Я не хочу уточнять, потому что я знаю, как легко недооценить время, требуемое для того, чтоб произошло что-то важное. Так почему же я столь оптимистичен в оценке скорости прогресса в понимании мозга и построении интеллектуальных машин? Моя вера коренится в основном на том, что я потратил уже довольно много времени на работу по проблеме интеллекта. Когда я впервые увлекся изучением мозга, я почувствовал, что решение этой головоломки может наступить при моей жизни. В течение многих лет я тщательно наблюдал спад ИИ, восхождение и падение нейронных сетей, и Декаду Мозга в 90-х годах. Я видел, как эволюционировали отношение к теоретической биологии и в особенности теоретической нейронауке. Я видел, как идеи предсказания, иерархического представления и время вползали в лексикон нейронауки. Я видел прогресс в моем собственном понимании и понимании у моих коллег. Я загорелся ролью предсказания 18 лет назад и с тех пор несколькими способами проверял ее. Поскольку я был погружен в нейронауку и компьютерную область свыше двух десятилетий, возможно мой мозг построил высокоуровневую модель того, как возникают технологические и научные изменения, и что модель предсказывает быстрый прогресс. Сейчас поворотный момент.
Астроном Карл Саган любил говорить, что понимание чего-либо не уменьшает его интересность и загадочность. Множество людей боятся, что научное понимание повлечет за собой компромисс с удивительностью, как если бы знание высасывало бы вкус и цвет жизни. Но Саган был прав. Истина в том, что с пониманием мы обретаем больше комфорта в нашей роли во вселенной и одновременно вселенная становится более полноцветной и загадочной. Быть крошечным пятном в бесконечном космосе, живым, сознательным, интеллектуальным и творческим — это более интересно, чем жить на плоской ограниченной Земле в центре маленькой вселенной. Понимание того, как работает наш мозг не уменьшает интересности и загадочности вселенной, нашей жизни, нашего будущего. Наше изумление станет только глубже по мере применения этих знаний к пониманию самих себя, построению интеллектуальных машин и затем овладевания новыми знаниями.
Следовательно поиск понимания мозга и построение интеллектуальных машин это достойная попытка и логически следующий шаг для человечества.
Этой книгой я надеюсь соблазнить молодых инженеров и ученых к изучению кортекса, к принятию модели «память-предсказание» и построению интеллектуальных машин. С ее высоты искусственный интеллект был большим продвижением. У него были журналы, образовательные программы, книги, бизнес-планы и предприниматели. Нейронные сети аналогично создали огромное возбуждение, как область, возникшая в 80-х. Но научные основы, лежащие в ИИ и нейронных сетях не годились для построения интеллектуальных машин.
Читать дальше