Это приводит нас к вопросу недружелюбия. Некоторые люди полагают, что быть интеллектуальным — это в основном то же самое, что иметь человеческий разум. Они боятся, что интеллектуальные машины обидятся на «порабощение», поскольку люди ненавидят быть рабами. Они боятся, что интеллектуальные машины попытаются захватить мир, потому что интеллектуальные люди в течение всей истории пытались захватить мир. Но эти опасения основаны на ложной аналогии. Они основаны на объединении интеллекта — неокортикального алгоритма — с эмоциональными мотивациями старого мозга — страх, паранойя и страсть. Но у интеллектуальных машин не будет таких способностей. У них не будет личных амбиций. Они не будут желать богатства, общественного признания, или чувственного удовлетворения. У них не будет потребностей, склонностей или плохого настроения. У интеллектуальных машин не будет ничего похожего на человеческие эмоции, если только мы специально не заложим этого в них. Наилучшее применение интеллектуальных машин будет там, где человеческий интеллект испытывает трудности, в тех областях, в которых наши чувства неадекватны, или в деятельности, которая скучна для нас. У этих видов деятельности минимальное эмоциональное содержание.
Интеллектуальные машины будут распространены от простых систем узкого применения до очень мощных сверхчеловеческих интеллектуальных систем, но пока мы не захотим сделать их человекоподобными — они не станут таковыми. Возможно когда-нибудь нам придется установить ограничения на то, что люди могут делать с интеллектуальными машинами, но этот день очень далек, и когда он настанет, этические вопросы скорее всего будут относительно легче по сравнению с моральными вопросами настоящего времени относительно генетики и ядерной технологии.
8.3. Зачем строить интеллектуальные машины?
Теперь к вопросу Что будут делать интеллектуальные машины?
Меня часто просят рассказать о будущем мобильных компьютеров. Организаторы конференций нередко просят меня описать, на что будут похожи наладонники или сотовые телефоны через пять или двадцать лет. Они хотят услышать мое видение будущего. Я не могу этого сделать. Я пытаюсь избежать того, что все вместе я называю одним словом «V». Чтобы убедить в этом, я однажды вышел на сцену в шляпе волшебника и с хрустальным шаром. Я объяснил, что никто не может видеть будущее детально. Хрустальный шар — это фикция, и любой, кто претендует на точное знание того, что произойдет в грядущие годы, обречен на провал. Самое лучшее, что мы можем сделать вместо этого — это понять общую тенденцию. Если вы понимаете общую идею, вы вполне сможете отследить ее, как бы она ни развивалась по мере выявления деталей.
Наиболее известный пример технологической тенденции это закон Мура. Гордон Мур верно предсказал, что количество элементов, которые могут быть размещены на кремниевом чипе, должно удваиваться каждые полтора года. Мур не сказал, относится ли это к чипам памяти, процессорам или чему-то еще. Он не сказал, в каком виде продукции эти чипы будут использованы. Он не предсказывал, будут ли чипы в пластиковых или керамических корпусах или наклеенные прямо на плату. Он не сказал ничего о различных процессах, используемых при производстве чипов. Он привязался к наиболее общей тенденции, какой мог, и оказался прав.
В настоящее время мы не можем предсказать окончательное использование интеллектуальных машин. Просто нет способа узнать конкретные детали. Если я, или кто-то еще, предсказывает в деталях, что будут делать эти машины, мы неизбежно будем обмануты. Однако, мы можем сделать нечто большее, чем просто пожимать плечами. Есть две линии идей, которые могут быть полезны. Одна — вообразить наиболее краткосрочное использование мозгоподобной системы памяти — очевидное, но менее интересная вещь, которую можно попробовать для начала. Второй подход — подумать о долгосрочных тенденциях, подобных закону Мура, которые могут помочь нам вообразить применения таких машин, которые, возможно, могли бы стать частью нашего будущего.
Давайте начнем с некоторых краткосрочных применений. Это вещи, кажущиеся очевидными, подобно замене радиоламп на транзисторы или построению калькуляторов на микропроцессорах. И мы сможем начать с обозрения некоторых областей, в которых пытались применить ИИ, но не смогли — распознавание речи, техническое зрение и умные автомобили.
* * *
Если вы когда-нибудь пытались использовать программы для распознавания речи для ввода текста в персональный компьютер, вы знаете, насколько они могут быть неуклюжими. Подобно Китайской Комнате Серла, у компьютера нет понимания того, что ему сказали. За время использования таких продуктов я был разочарован. Если в комнате есть хоть какой-нибудь шум, от упавшего карандаша до чьего-нибудь разговора, на экране появляются лишние слова. Процент ошибок распознавания очень высок. Часто слова, которые послышались программе, не имели смысла. «Remember to fell Mary that the bog is ready to be piqued up». Ребенок знает, что это неправильно, но не компьютер. Аналогично, так называемые естественно-языковые интерфейсы были целью для компьютерщиков многие годы. Идея в том, чтоб вы могли сказать компьютеру или другим устройствам сказать, чего вы хотите — и пусть машина делает свою работу. Персональному цифровому помощнику, или PDA, вы могли бы сказать «Перенести занятия баскетболом для моей дочери на десять часов утра в воскресенье». Такое невозможно сделать на приемлемом уровне с помощью традиционного ИИ. Даже если компьютер смог бы распознать каждое слово, для того, чтоб выполнить задачу ему потребовалось бы знать, в какую школу ходит ваша дочь, что, возможно, вы имели в виду ближайшее воскресенье, и, может быть, что такое «занятия баскетболом» потому что назначение могло бы только говорить «Menlo vs. St. Joe». Или, вероятно, вы хотели бы, чтоб компьютер слушал радиопередачу на предмет упоминания определенного продукта, даже если диктор описывает этот продукт не используя его название. Вы и я знали бы, о чем он говорит, но компьютер — нет.
Читать дальше