К оглавлению
Астрофизик Сергей Попов о гравитационных волнах
Алла Аршинова
Опубликовано02 декабря 2010 года
Общая теория относительности – одна из самых проверенных и надежных теорий в современной физике. Почти все предсказания в рамках этой теории были подтверждены экспериментально. Но, как известно, в ней остаётся один не проясненный до конца вопрос: существование гравитационных волн. В том, что они есть, никто из научного мира всерьез не сомневается, потому что наука располагает очень внушительными косвенными свидетельствами.
Обнаружение гравитационных волн может произойти в трех случаях. Во-первых, если ученым повезет, и в нашей галактике произойдет, например, взрыв сверхновой. Тогда уже существующие земные детекторы, вероятно, смогут зафиксировать гравитационную волну, рожденную этим событием. Во-вторых, волны могут быть обнаружены от слияния нейтронных звезд или черных дыр, если будет повышена чувствительность существующих установок. И третий вариант – это успешная работа космических детекторов гравитационных волн, которые пока находятся на этапе проектирования и в космос отправятся еще не скоро.
О том, как работают детекторы гравитационных волн, и когда можно ждать от них результатов, рассказывает кандидат физико-математических наук, старший научный сотрудник Государственного астрономического института им. П. К. Штернберга Московского государственного университета Сергей Попов.
– Что такое гравитационные волны?
– Начнем с аналогии. Представьте себе электрический заряд. Вокруг есть электрическое поле, но никакой волны нет. Если мы начнем ускорять заряд, поле будет «отрываться» – пойдет электро-магнитная волна. Она уже живет сама по себе. Примерно то же самое происходит с гравитационным полем. Вокруг массивного тела есть поле. Если мы начнем его двигать (например, если тело вращается вокруг другого объекта, как Земля вокруг Солнца), то опять-таки гравитационное поле будет «отрываться» – побежит гравитационная волна.
Всё вокруг заполнено гравитационными волнами, поскольку их испускают почти все движущиеся объекты. Например, вы, помахав рукой, испустили их. Не испускает гравитационных волн только вращающаяся идеальная сфера или вращающийся симметрично сплюснутый шар. Но волны очень слабые, а потому зарегистрировать их сложно. Сколь-нибудь заметный эффект можно ожидать, лишь наблюдая процессы астрономического масштаба. Например, взрыв сверхновой приводит к всплеску гравитационных волн. Двойные системы испускают гравитационные вволны, когда звезды кружат вокруг общего центра масс. Наиболее мощные сигналы ожидают от слияния нейтронных звезд или черных дыр. В последнем случае основная доля энергии уносится именно гравволнами.
– В ОТО гравитация связана с искривлением пространства. Гравитационные волны – это колебания пространства?
– Поскольку Общая теория относительности – это геометрическая теория гравитации, то, в самом деле, можно говорить о гравволнах как о «волнах пространства-времени». По пространству-времени бежит возмущение. С точки зрения наблюдателя проходящая гравитационная волна выглядит как возмущение приливных сил.
– Почти никто не сомневается, что гравитационные волны есть, но доказательства их существования, между тем, существуют только косвенные. Может ли то, что принято считать проявлением гравитационных волн, на самом деле оказаться совсем другим физическим явлением?
– Самое яркое проявление «работы» гравволн – изменение параметров орбит двойных звезд. Наиболее очевиден эффект в случае двойных радиопульсаров, особенно, если это пара из двух нейтронных звезд. На мой взгляд (равно как и на взгляд подавляющего большинства физиков и астрономов), объяснить данные по таким радиопульсарам чем-то, кроме гравволн, нельзя. С другой стороны, пока прямой регистрации нет.
– Почему так важно обнаружить гравитационные волны?
– Во-первых, просто для того, чтобы подтвердить их существование. Это один из важных моментов в нашем понимании того, что такое гравитация и как она работает. Во-вторых, регистрируя сигнал от источников, мы можем получать уникальную информацию о них. Скажем, если мы регистрируем слияние двух нейтронных звезд, то мы можем получать уникальную информацию о строении этих объектов. А это уже не просто академически-астрономический интерес, а выход на квантовую хромодинамику, то есть на ядерную физику. Если же мы регистрируем слияния черных дыр, то мы получаем один из лучших способов показать, что черные дыры реально существуют. Очень большой прорыв станет возможен, когда будут обнаружены так называемые космологические или реликтовые гравитационные волны. Они должны быть связаны с самыми первыми мгновениями жизни Вселенной – со стадией инфляции. Это будет самая непосредственная информация о Большом взрыве.
Читать дальше