- Астрономия вообще и, в частности, астрофизика, развивается стремительнее многих других наук. С чем это связано? Что является двигателем прогресса в этой науке?
- Двигателем прогресса в астрофизике, как ни скучно это прозвучит, является развитие технологий. За последние несколько десятилетий (начиная, скажем, с середины прошлого века) астрофизическая картина мира претерпела кардинальные изменения. При этом собственно физическая основа астрофизических моделей за это время проэволюционировала не столь значительно. До сих пор в профессиональной литературе в ходу имена Кеплера, Ньютона, Эйлера, Максвелла... Но вот техника наблюдений и моделирования изменилась неимоверно. Соответственно, грандиозно вырос объём информации о Вселенной, которую мы в состоянии получить и обработать. Главное достижение состоит, пожалуй, в том, что у нас появилась возможность проводить наблюдения во всём диапазоне электромагнитных волн — от гамма-излучения до радиоволн. Да и компьютерная техника заметно «подросла». Первые численные модели астрофизических процессов в 1960-е годы выполнялись на компьютерах, которые в современном мире по мощности могли бы конкурировать разве что с мобильниками.
Если же говорить более конкретно, то большой вклад в развитие астрофизики внесла гонка вооружений. Многие численные гидродинамические модели, физические базы данных попадали в астрофизику из Лос-Аламоса и других подобных учреждений. Не для астрофизических нужд разрабатывались изначально такие прорывные технологии, как адаптивная оптика и детекторы жёсткого излучения. Некоторые важные астрофизические явления и объекты (гамма-всплески, инфракрасные тёмные облака) были обнаружены при помощи военных спутников.
- Каждая наука имеет свою методологию. Какие есть особенности у методологии астрофизики?
- Можно, пожалуй, выделить две ключевые особенности: невозможность проведения запланированного эксперимента и возможность наблюдения исследуемых объектов только с одной стороны. Физик (как правило) имеет возможность так построить эксперимент, чтобы в нём наиболее выпукло проявлялся какой-то специфический процесс. В астрофизике эксперимент ставит Природа, которая нимало о нуждах исследователя не заботится. Допустим, физик хочет в деталях исследовать колебания маятника. Он сделает его из немагнитного материала, поместит на жёстком подвесе в суперизолированное помещение, откачает воздух, поставит десять камер, чтобы следить за маятником с разных ракурсов. В астрофизике тот же маятник будет сделан из материала с неизвестными магнитными свойствами, помещён в магнитное поле, подвешен на резинке, с одной стороны на него будет налетать поток газа, с другой — космические лучи, и наблюдать всё это можно будет только с одной стороны, как правило сбоку в плоскости колебаний.
Ещё один важный фактор — разнообразные эффекты наблюдательной селекции, суть которых сводится к тому, что внимание наблюдателя привлекают, в первую очередь, наиболее яркие и, как следствие, наименее типичные объекты.
Из-за этих ограничений в астрофизике к теоретической интерпретации наблюдений приходится подходить особенно жёстко. В частности, обязательно необходимо проверять, насколько предлагаемое объяснение согласуется с данными из других отраслей астрофизики. Это в общем тоже ложится на учёного дополнительным бременем: он не может позволить себе разбираться только в своей узкой области.
- В астрономии много разделов, какой из них самый сложный в смысле получения информации?
- Да в общем-то ни один из этих разделов особой лёгкостью не отличается. Но самые значительные сложности, наверное, у космологов. Им приходится иметь дело с очень большим объектом, и для выявления каких-то закономерностей необходимо с высоким качеством наблюдать если не всё небо, то по крайней мере значительные его участки, причём с
использованием космических обсерваторий. Эта задача всё ещё остаётся очень ресурсоёмкой.
- Каким инструментарием обладает астрофизика? Каким образом, наблюдая свет от удаленных звёзд, астрофизики определяют их параметры?
- Практически единственный источник информации о космических объектах — это электромагнитное излучение. Конечно, есть ещё космические лучи и нейтрино, но по информативности они со светом конкурировать не смогут ещё очень долго. Поэтому в основе астрофизического инструментария лежит, с одной стороны, необходимость зарегистрировать электромагнитное излучение, с другой стороны, необходимость понять, как оно было сгенерировано.
Читать дальше