Называются эти экраны жидкокристаллическими — по основному их компоненту. По-английски это название звучит как Liquid Crystal Display, или сокращенно LCD. А действует он так.
Свет, который нас окружает, как все мы может узнать из курса школьной физики, имеет и волновые свойства. В частности, у каждой его единицы — волны есть такой параметр, как направление плоскости колебания — как, скажем, у веревки, которую одним концом привязали к забору, а другой конец дергают вверх-вниз, направление плоскости колебания будет вертикальным, а если ее дергать вправо-влево, то оно будет горизонтальным. Обычный свет от лампы, Солнца, свечи содержит в себе волны со всеми направлениями колебаний.
Существуют вещества с кристаллической структурой, которые обладают удивительным свойством — они способны пропускать через себя только волны света со вполне определенным направлением колебаний. В результате после прохождения пучка света через пластину из такого вещества ( именуемую поляризационным фильтром ) все его световые волны будут иметь одинаковое направление плоскости колебаний. Причем частотные характеристики каждой световой волны (то есть цвет пучка света) не изменятся — только немного уменьшится яркость пучка. Свет поляризуется — то есть все его волны приобретают одинаковое направление плоскости колебаний. Формируется плоскость поляризации света — то есть единственная оставшаяся плоскость, в которой происходят колебания световых волн после прохождения через поляризационный фильтр.
Вещества, именуемые жидкими кристаллами , обладают двумя важными свойствами. Во-первых, при прохождении через их слой поляризованного света его плоскость поляризации поворачивается на 90 градусов. А, во-вторых, при подаче электростатического поля на слой жидких кристаллов их структура изменяется и такого поворота плоскости поляризации прошедшего через их слой света не происходит.
А теперь представьте себе «бутерброд» из двух поляризационных фильтров с плоскостями поляризации, перпендикулярными друг другу, а между ними — слой жидких кристаллов. Если эта конструкция находится вне электростатического поля, то свет проходит через первый фильтр, поляризуется, поворачивает свою плоскость поляризации на 90 градусов в слое кристаллов и свободно проходит через второй фильтр.
Но если на слой жидких кристаллов подать электростатическое поле, то плоскость поляризации проходящего через них света не повернется на 90 градусов и не пройдет через второй фильтр! Получится «затвор» для света — со стороны будет видно, как внезапно трехслойная конструкция стала темной, непрозрачной.
Более того — если изменять напряженность электростатического поля, то прозрачность слоя из фильтров и кристаллов будет постепенно изменяться! То есть при малой напряженности поля трехслойная конструкция будет лишь слегка замутненной, при средней — достаточно темной, а при сильном поле — полностью непрозрачной. Это и понятно — ведь чем мощнее поле, тем сильнее изменяется структура кристаллов и тем большее количество молекул кристаллов изменяют свою конфигурацию.
В LCD-мониторах используется именно этот эффект. Делается матрица из множества мелких жидкокристаллических ячеек. Каждые несколько (обычно три) стоящих вокруг одного центра ячеек соответствуют одному пикселу изображения. За матрицей и перед ней помещаются поляризационные фильтры с перпендикулярными направлениями поляризации. А к одному из этих фильтров прикрепляется сетка из красных, зеленых и синих светофильтров, каждый из которых точно совмещается с соответствующей ячейкой матрицы. К каждой ячейке матрицы подводится микроэлектрод для создания электростатического поля. А за всем этим сооружением размещается лампа для подсветки (рис. 15.1).
Рис. 15.1. Один элемент жидкокристаллического экрана
В результате, управляя прозрачностью ячеек с жидкими кристаллами с помощью подачи на них электростатического поля, можно формировать изображение. Комбинируя сочетания количества красных, зеленых и синих ячеек в каждой их группе и различную прозрачность каждой ячейки, можно получать различные цвета. Чем больше возможность регулировать напряженность электростатического поля на каждой ячейке, тем больше разных цветов может экран передавать.
Читать дальше