Маятниковые часы мюнхенского мастера Клеменса Райфлера
Новая эталонная мера времени, однако, не нашла широкого распространения. Причин тому несколько. Тут и сложность точного вычисления эфемерид, и не особенно очевидная практическая польза небесной секунды. Люди, далёкие от астрономии, желали видеть бег времени собственными глазами — и желательно без помощи громоздких оптических приборов, направленных в небо.
В дополнение к официально принятым астрономическим стандартам времени неустанно велись разработки «земных» осцилляторов, которые не использовали бы в работе движение небесных тел.
Первыми на роль механических осцилляторов стали претендовать маятниковые системы. Механизм маятниковых часов, описанный в 1639 году Галилео Галилеем, доминировал в качестве высокоточного измерителя времени на протяжении трёхсот лет. Апогея своего развития маятниковые осцилляторы достигли в первой половине прошлого столетия. Долгое время самыми точными маятниковыми хронометрами считались изделия немецкого мастера Клеменса Райфлера.
В середине двадцатых годов прошлого века их на этом почётном посту сменили хронометры англичанина Уильяма Шорта, отличающиеся наличием двух маятников, один из которых работал непосредственно осциллятором, а другой двигал часовые стрелки. Погрешность часов Шорта составляла потрясающие -7
В болеe поздней двухмаятниковой модели Шорта вместо пружины использовался электрический источник энергии
Именно такие маятниковые часы стали так называемыми «регуляторами» — эталонами, устанавливаемыми в местах, где точность измерения времени критически важна, например на биржах и в портах. По этим регуляторам подстраивались все менее точные механические часы. Высокая точность маятниковых осцилляторов сделала их первыми стандартами частоты (а значит, и времени), которые признало американское Национальное бюро стандартов (NBS). Образцы изделий Райфлера и Шорта до сих пор хранятся в музее этой организации.
Электрификация всего и вся в тридцатые годы прошлого столетия позволила обнаружить стандарт частоты, существенно превосходящий по точности творения знаменитых часовщиков. Началось всё с использования не очень точных колебательных контуров на базе индуктивности и конденсаторов, однако эти схемы быстро были вытеснены кварцевыми осцилляторами.
Пьезоэлектрический эффект, обнаруженный у кристаллов кварца, оказался удивительно точным осциллятором, заодно позволяющим создавать устройства малых размеров. Вскоре кварцевые регуляторы сменили на посту в NBS эталонные маятниковые стандарты. В 1929 году исследовательский центр Bell Labs разработал для NBS четыре высокоточных кварцевых осциллятора, генерирующих частоту 100 Гц и обладающих погрешностью -9
Эталонные кварцевые осцилляторы, установленные в Национальном бюро стандартов
Почему же эталонные кварцевые осцилляторы потребовали замены, если кварц — такое точное, компактное и экономичное решение? Всё дело в том, что осциллятор на основе кварца неидеален хотя бы потому, что найти два кристалла с абсолютно одинаковыми свойствами практически нереально. Кроме того, кварц подвержен старению, приводящему к «уходу» частоты. Вдобавок на его характеристики влияет масса природных и техногенных факторов: влажность, температура окружающей среды, атмосферное давление и даже вибрация.
Именно поэтому учёные, приоткрывшие завесу тайны строения атома, стали всё больше заглядываться на этот микрокосм, в котором движение электронов вокруг ядра так же периодично, как и движение планет вокруг солнца. Только на несколько порядков точнее.
Читайте также: Как устроены атомные часы. В 2012 году атомное хронометрирование будет праздновать своё сорокапятилетие. Как же устроен механизм этих атомных часов? Какие «часовщики» придумали и совершенствовали этот чрезвычайно точный механизм? Есть ли ему замена? Попробуем разобраться.
Читать дальше