А часть первого тома посвящена превращениям пенициллина с помощью ферментов, точнее, одного фермента под названием пенициллинамидаза. «Превращениям» в том смысле, что этот фермент может как расщеплять пенициллин «пополам» – при этом терапевтическая активность пенициллина полностью пропадает, – так и синтезировать из полученных половинок новые пенициллины. Например, из пенициллина получают ампициллин и многие другие «полусинтетические» пенициллины. Сам-то пенициллин – относительно небольшая молекула, всего двадцать пять С – С-, С – S-, C – O-, С=O– и С – N-связей. Поэтому он и попал в том, где «простые субстраты».
В этой связи – проходное воспоминание. Заходит как-то в нашу лабораторию в корпусе «А» Ефим Арсеньевич Либерман, замечательная личность, физик и биолог, лауреат Государственной премии СССР. Просто проходил по коридору и по старой памяти заглянул ко мне. А я ломаю голову над синтезом нового пенициллина из обычного.
– Над чем работаешь? – это Либерман меня спрашивает. Я говорю, что вот, пытаюсь новое производное пенициллина смастерить, с помощью фермента.
– А что, – спрашивает, – в принципе-то МОЖНО получить? – Конечно, – говорю, – по термодинамике должно проходить, надо только условия подобрать, чтобы равновесие сместить в сторону получения.
– Ну тогда зачем время тратить? – это Либерман. – Если известно, что в принципе можно получить, то это уже не наука.
Точка зрения физика.
24. Иммобилизованные ферменты
Защита моей кандидатской диссертации в начале 1970-х годов примерно совпала по времени с началом новой эры в изучении и применении ферментов – эры иммобилизованных ферментов и инженерной энзимологии. Напомню, что ферменты – это катализаторы биологического происхождения, или биокатализаторы. Они, как и прочие катализаторы, ускоряют химические реакции. Но в отличие от традиционных химических катализаторов – металлов и их комплексов с органическими молекулами, – обычно получаемых искусственно, ферменты синтезируются живыми организмами – микробами, растениями, животными. И прочими насекомыми, червями, земноводными, морскими организмами и так далее.
Ферменты представляют собой, как правило, белковые образования, часто сопряженные с ионами металлов, а также сахарами и прочими органическими соединениями, которые иногда называют «коферменты». Ферменты по размеру больше молекулы, скажем, воды в тысячи и десятки тысяч раз. Если вода состоит из трех атомов, пенициллин, упоминаемый ранее, – из 41 атома, холестерин, опять же упоминаемый ранее, – из 68 атомов, то молекулы белков состоят из тысяч, десятков и иногда сотен тысяч атомов. Тем не менее белки можно выделить в индивидуальном виде и сотни их, если не тысячи, уже выделены. Можно спорить, в насколько чистом виде они выделены, и придираться к долям процента примесей, но это опять же детали.
А поскольку ферменты – это крупные органические молекулы, состоящие из сотен и тысяч химических групп – аминогрупп, карбоксильных, гидроксильных и прочих, – многие из которых торчат наружу, высовываясь в воду, в которой фермент растворен, то для химика не представляет особого труда достаточно прочно присоединить какую-либо из этих групп к стеклянным шарикам, гранулам пластмассы, кусочкам древесины и прочим твердым или мягким «носителям». Ведь стекло тоже содержит доступные химические группы – гидроксильные. И целлюлоза – тоже гидроксильные, но в другом окружении, нежели в стекле. А пластмассы вообще можно подобрать на любой химический вкус. Короче, ферменты можно присоединить к водонерастворимым носителям и тем самым их «иммобилизовать». То есть в переводе с английского термина – «обездвижить».
Такими иммобилизованными ферментами на гранулах носителя можно наполнить колонну-реактор, поставленную, например, вертикально, и пропускать через нее раствор субстрата, то есть вещества, в котором нужно провести необходимое химическое превращение. Такое измененное вещество называется, естественно, продуктом. Так вот, субстрат прокачивается через колонну, раствор продукта собирается на выходе колонны, а активный, работающий фермент продолжает оставаться в колонне. То есть мы превратили его из гомогенного катализатора в гетерогенный.
Осознание этой концепции вызвало революцию в использовании ферментов для технологических целей. Результатом явилось создание инженерной энзимологии, то есть широкомасштабного использования ферментов для промышленных целей. В середине 1980-х в Союзе вышел восьмитомник под названием «Биотехнология», а один из томов так и назывался – «Инженерная энзимология». Авторами его были те, чьи имена уже упоминались выше, в других главах и другом контексте. А именно И.В. Березин и его ученики, а также ученики его учеников. Эта книга была итогом десятилетней работы нашего коллектива, работы и осмысления.
Читать дальше
Конец ознакомительного отрывка
Купить книгу