Рис. 3.9. Структура анимационного файла в формате GIF 89a
Помимо первоначальной версии формата GIF-файлов, названной GIF 87a, имеется выпущенная двумя годами позднее вторая версия – GIF 89a. Вторая версия добавила несколько новых возможностей, в том числе, хранение текстовых и графических данных в одном файле. Для этого в описание файла добавлен специальный блок "Управляющие расширения", который размещен сразу после трех общих для всего файла элементов и предшествует описанию отдельных изображений в составе файла. Этот блок состоит из трех элементов: "Расширение комментариев", "Расширение приложений" и "Расширение управления графикой" (рис. 3.9).
На рисунке этот блок выделен двумя жирными линиями. В состав управляющих расширений входят: расширение комментариев, расширение приложений и расширение управления графикой. В последнем указано, в частности, и величина задержки кадра в сотых долях секунды, а также значение индекса прозрачности цвета, который позволяет создавать новые анимационные эффекты. Кстати, большинство современных программ-аниматоров обеспечивает подготовку анимационных файлов именно в этом формате (см. главу 5).
3.5.2. Принципы представления цифрового видео
Обычные телевизионные видеоданные представляют собой поток аналоговых сигналов. Компьютерная обработка видеоинформации состоит в преобразовании их в цифровой формат с последующим хранением этих данных на жестком или компакт-диске или другом устройстве хранения информации. Оцифровка видеосигнала, как и оцифровка звука, включает те же две стадии: дискретизацию данных аналогового видеопотока, т. е. снятие отсчетов с определенной частотой, и преобразование каждого такого отсчета в цифровой эквивалент или квантование.
При хранении оцифрованных данных в несжатом формате изображение размером 400×300 пикселов с глубиной цвета 24 бита на пиксел, обновляемое с частотой 25 Гц, потребует скорости передачи информации около 9 Мбайт/с. А хранение данных для показа 5-минутного ролика в указанном формате потребует информационное пространство, превышающее 2,5 Гбайта. Естественно, что при работе с такими объемами информации невозможно обойтись без сжатия данных, однако и этом случае потребуется время и определенные вычислительные мощности на распаковку данных. Достичь оптимального сжатия можно путем совершенствования аппаратных или программных средств, а может быть – совместно тех и других.
В качестве аппаратных средств используются специальные видеопроцессоры, которые поддерживают высокоскоростную компрессию и декомпрессию данных, не загружая центральный процессор компьютера. Второй подход состоит в использовании специализированных методов программного сжатия и распаковки предварительно сжатых видеоданных.Аналоговый видеосигнал включает в себя несколько различных компонентов, объединенных в единое целое. Такой составной видеосигнал малопригоден для оцифровки. Предварительно его следует разделить на так называемые базовые компоненты. Обычно компоненты представляют собой три различных сигнала, соответствующие определенной цветовой модели. Если в статической графике используется RGB-модель, то в цифровом видео чаще используется модель YUV. Эта модель уже много лет успешно используется в аналоговом телевидении, так как позволяет принимать сигналы цветного телевидения на черно-белый телевизионный приемник. Исходный RGB-сигнал преобразуется в яркостной сигнал Y и два сигнала цветности U и V по следующим формулам:
Y = 0,299R + 0,587G + 0,114B, (3.2)
U= B – Y, (3.3)V = R – Y, (3.4)
где R, G и B уровень цветовых компонентов исходного сигнала.
Видеопоследовательности отображаются в виде серии кадров или фреймов, каждый из которых, по существу, является графическим изображением и включает в себя определенное число пикселов. Такой видеофрейм может быть сжат с помощью одного из алгоритмов сжатия изображений, с потерями или без потерь.
Так, применение дискретного косинусного преобразования, упомянутого в разд. 3.3, позволяет выделить высокочастотные составляющие пространственного спектра, которые практически не воспринимаются человеческим глазом и могут быть отброшены как избыточная информация. Затем фрейм может быть сжат с помощью одного из алгоритмов сжатия без потерь или за счет более сложной схемы, такой как JPEG. При внутрифреймовом кодировании достигается коэффициент сжатия в пределах от 20 до 40. Еще большее значение этого коэффициента достигается при кодировании совокупности фреймов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу