Как Amazon использует ИИ
Amazon первой внедрила рекомендательный сервис, то есть предложение товаров на основе предыдущих покупок. Это с самого начала было основой бизнес-стратегии компании. За годы аналитические инструменты усовершенствовались, но до сих пор делят пользователей на категории по собранным о них данным, моделируют поведение и предлагают товары, популярные у покупателей из той же категории.
В начале 2014 года компания запустила крупную модернизацию существующей рекомендательной системы: начала внедрять алгоритмы глубокого обучения в прогностические инструменты [31] Wired, Inside Amazon’s Artificial Intelligence Flywheel: https://www.wired.com/story/amazon-artificial-intelligence-flywheel/
. Сейчас глубокое обучение встроено в большинство функций сайта, разработанных для персонификации покупательского опыта: «эти товары часто покупают вместе», «купившие этот товар также приобрели…» и т. д.
Глубинные слои нейронных сетей учатся так же, как человеческий мозг, – на данных, которые через них проходят. Алгоритмы постоянно совершенствуются в поиске паттернов и связанных данных – в случае Amazon это данные о транзакциях и покупательском поведении. На этих алгоритмах работают рекомендательный сервис Amazon, поиск Google, лента Facebook и подбор фильмов Netflix. Как и соперники в борьбе за первое место, Amazon делает ставки на глубокое обучение – двигатель революции ИИ.
Amazon использует ИИ в центрах исполнения заказов – на складах, где люди и роботы ежедневно собирают и упаковывают миллионы посылок. С виду складские роботы ничем не примечательны – это приземистые передвижные платформы [32] Robots, Drive Unit: https://robots.ieee.org/robots/kiva/?utm_source=spectrum
. Но благодаря алгоритмам глубокого обучения они шустро снуют по складским лабиринтам, находят на полках нужный товар и привозят сотруднику, который комплектует заказ. Робот способен действовать в условиях, неудобных для человека, поэтому Amazon расширяет складские площади и ускоряет выполнение заказов, а значит, растет и доход. В настоящее время в центрах исполнения заказов Amazon по всему миру используются сотни тысяч роботов [33] IEEE Spectrum, Brad Porter, VP of Robotics at Amazon, on Warehouse Automation, Machine Learning, and His First Robot: https://spectrum.ieee.org/automaton/robotics/industrial-robots/interview-brad-portervp-of-robotics-at-amazon
.
Amazon Alexa
Уже не верится, что персональный домашний ИИ-ассистент в 2015 году казался чудом. К 2018 году он был в 16 % семей в США. Технология совершенствуется, реклама не отстает – и «электронного помощника» покупают все чаще [34] Tech Crunch, 39 million Americans now own a smart speaker, report claims: https://techcrunch.com/2018/01/12/39-million-americans-now-own-a-smart-speaker-report-claims/
.
Шагом вперед стало понимание, что реализацию домашних ИИ-устройств ограничивает не технология – она была уже достаточно развитой для выполнения такого рода задач. Проблема состояла в интерфейсе: смартфон – удобная вещь, но не так просто устроенная, как выключатель, чайник, радио или поваренная книга.
C Echo появилось голосовое управление умными устройствами: не отрываясь от уборки, можно найти нужную информацию или включить музыку.
Ассистент интерпретирует голосовые команды с высокой точностью. Этим он обязан алгоритмам глубокого обучения [35] Quora, How does Amazon use Deep Learning?: https://www.quora.com/How-does-Amazon-use-Deep-Learning
. Нейронные сети реагируют на заданное пользователем «пробуждающее слово» – сигнал слушать и анализировать команду. С опытом ассистент все лучше понимает нюансы разговорной речи. Глубокие нейронные сети учатся говорить, как мы, обрабатывая голосовые данные.
Интеллектуальный «маховик» Amazon
Модель распространения ИИ во все сферы деятельности в Amazon назвали «маховиком» [36] Wired, Inside Amazon’s Artificial Intelligence Flywheel: https://www.wired.com/story/amazon-artificial-intelligence-flywheel/
. Вообще, это механическое устройство, которое накапливает поступающую от генератора кинетическую энергию и регулирует степень ее высвобождения. А в случае Amazon избыточная «энергия», сгенерированная успешным внедрением ИИ в одну сферу деятельности, идет на исследования и инвестиции в другую.
Таким образом создается благоприятная среда обмена данными и технологиями между отделами и подразделениями. Лучшие практические наработки передаются из рук в руки. К примеру, повышение точности рекомендательного сервиса с помощью глубокого обучения пригодилось в распознавании речи Echo.
Другие подразделения тоже обнаружили, в чем плюсы повсеместного распространения устройств с Alexa – в частности, пользовательских приложений под названием «навыки». Так были добавлены навыки, предоставляющие пользователям голосовой доступ к Amazon Prime Video, Amazon Music Unlimited и другим сервисам. Благодаря глубокому обучению Alexa из слов пользователя делает вывод, какие из 40 тыс. навыков он счел полезными [37] Amazon, The Scalable Neural Architecture behind Alexa’s Ability to Select Skills: https://developer.amazon.com/blogs/alexa/post/4e6db03f-6048-4b62-ba4b-6544da9ac440/the-scalable-neural-architecturebehind-alexa-s-ability-to-arbitrate-skills
.
Читать дальше