С открытием Нептуна оказалось, что законы Ньютона безраздельно господствуют даже на внешних границах Солнечной системы. И тем не менее была проблема и с планетой поближе к нашему дому, Меркурием. Он отказывался соответствовать ожиданиям, отклоняясь от орбиты, предсказанной законами Ньютона. Было бы легко отмахнуться от этого недостатка как от заблуждения или исключения, которое доказывает правило, особенно потому, что Меркурий казался единственной планетой, где не действовали законы Ньютона, даже если отклонение от них было небольшим.
Но эта незначительная аномалия таила главный изъян законов Ньютона, и Эйнштейн ухватился за этот сбой, чтобы придумать новую теорию, которая бы точно предсказала орбиту Меркурия. Описывая гравитацию, Ньютон опирался на грубую модель, гласившую, что «тела притягиваются друг к другу» [83] Клегг, «Gravitational Waves», стр. 29.
. Модель Эйнштейна была намного сложнее: «Вещество искривляет пространство-время» [84] Клегг, «Gravitational Waves», стр. 29.
. Чтобы понять, что имел в виду Эйнштейн, представьте себе, что вы кладете на батут несколько бильярдных шаров и один шар для боулинга [85] Айзексон, «Эйнштейн: его жизнь и его Вселенная».
. Тяжелый шар искривляет ткань батута, заставляя более легкие двигаться к нему. Согласно Эйнштейну, гравитация действует точно так же: она деформирует структуру пространства и времени. Чем ближе вы к огромному шару для боулинга, который является Солнцем (а Меркурий является ближайшей к Солнцу планетой), тем сильнее искривление пространства и времени и тем значительнее отклонение от законов Ньютона.
Как показывают эти примеры, путь к включению света начинается с выключателя, который срабатывает в вашем собственном сознании, когда вы замечаете аномалию. Но мы не созданы для того, чтобы замечать аномалии. В детстве нас учили разделять вещи на две стороны: хорошую и плохую. Чистить зубы и мыть руки – это хорошо. Незнакомые люди, предлагающие нам прокатиться в пугающем белом фургоне, – это плохо. Как пишет Т. К. Чемберлен: «От хорошего ребенок не ждет ничего, кроме хорошего; от плохого – ничего, кроме плохого. Ожидать хорошего от плохого или плохого от хорошего – значит радикально расходиться с детскими ментальными методами» [86] Т. К. Чемберлен, «The Method of Multiple Working Hypotheses», Science, май 1965 года, http://arti.vub.ac.be/cursus/2005-2006/mwo/chamberlin1890science.pdf.
. Как сказал Азимов, мы считаем, что «все, что не является идеально и безупречно правильным, является полностью ошибочным» [87] Айзек Азимов, «The Relativity of Wrong», Skeptical Inquirer 14 (осень 1989 года): стр. 35–44.
.
В детстве это чрезмерное упрощение помогает нам осмыслить мир. Но и с возрастом нам не удается перерасти эту обманчивую теорию. Мы пытаемся вставить кубик в круглое отверстие и разложить вещи (и людей) по аккуратным категориям, чтобы создать удовлетворительную, но обманчивую иллюзию восстановления порядка в беспорядочном мире.
Аномалии искажают эту чистую картину хорошего и плохого, правильного и неправильного. Жизнь достаточно утомительна и без неопределенности, поэтому мы устраняем ее, игнорируя аномалии. Мы убеждаем себя, что аномалия должна сильно выделяться или же являться ошибкой измерения, а потому притворяемся, что ее не существует.
За такое отношение приходится дорого платить. «Открытие начинается с осознания аномалии, то есть с установления того факта, что природа каким-то образом нарушила навеянные парадигмой ожидания, направляющие развитие нормальной науки», – объясняет физик и философ Томас Кун [88] Кун Т. Структура научных революций. Пер. И. М. Налетова. М.: АСТ, 2015. ( Прим. пер. )
[89] Томас Кун «Структура научных революций». Пер. Налетов И. М.: АСТ.
. Азимов утверждал, что «Эврика!» – это самая захватывающая фраза в науке. Вернее, заметил он, научное развитие часто начинается с того, что кто-то видит аномалию и говорит: «Забавно…» [90] Говард Уайнер и Шон Лайсен, «That’s Funny… A Window on Data Can Be a Window on Discovery», American Scientist, июль 2009 года, www.american scientist.org/article/thats-funny.
Открытие квантовой механики, рентгеновских лучей, ДНК, кислорода, пенициллина и многого другого – все это произошло тогда, когда ученые приняли аномалии, а не проигнорировали их [91] Об открытии квантовой механики см. Джон Д. Нортон, «Origins of Quantum Theory», глава в онлайн-курсе «Эйнштейн для каждого», Питтсбургский университет, осень 2018 года, www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/quantum_theory_origins. О рентгеновских лучах см. статью под ред. Алана Чодоса, «November 8, 1895: Roentgen’s Discovery of X-Rays», This Month in Physics History series, American Physical Society News 10, выпуск № 10 (ноябрь 2001 года), www.aps.org/publications/aps news/200111/history.cfm. О ДНК см. Лесли Э. Прэй, «Discovery of DNA Structure and Function: Watson and Crick», Nature Education 1, выпуск № 1 (2008): стр. 100, www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397 О кислороде см. Джулия Дэвис, «Discover-ing Oxygen, a Brief History», Mental Floss, 1 августа 2012 года, http://mentalfloss.com/article/31358/discovering-oxygen-brief-history. О пенициллине см. Теодор С. Эйкофф, «Penicillin: An Accidental Discovery Changed the Course of Medicine», Endocrine Today, август 2008 года, www.healio.com/endocrinology/news/print/endocrine-today/%7B15 afd2a1-2084-4ca6-a4e6-7185f 5c4cfb0%7D/penicillin-an-accidental-discovery-changed-the-course-of-medicine.
.
Читать дальше