Экстравагантный математик XVI века Джероламо Кардано прославился тем, что вылечился от импотенции, после чего родил троих детей. Сильно впечатлился, стал и сам врачевать, а так как человеком был умным и странным, лечил он хорошо и нажил себе множество недругов. Его сын тоже прославился, так как дико отравил свою жену, из-за чего папаша окончательно свихнулся, составил гороскоп Иисуса Христа и попал в застенки инквизиции. Посвятил анализу игры содержательную книженцию « Книга об игре в кости » (1526 год, опубликована посмертно).
Кардано провёл уже безошибочный анализ для значений суммы очков трёх костей и указал для разных событий ожидаемое значение доли «благоприятных» событий: например, при бросании трех кубиков доля случаев, когда значения всех трёх совпадают, равна 6/216 или 1/36. Вроде бы и очевидно, что их всего шесть – три единицы, три двойки, ну и так далее, всего шесть граней, но до этого (да и после) какие-то были проблемы у людей с этой концепцией.
Именно Джероламо Кардано предложил формулировку вероятности – что это число благоприятных исходов, делённое на число всех возможных исходов. Кардано сделал ещё одно весьма проницательное замечание: при небольшом числе игр реальное количество исследуемых событий может сильно отличаться от теоретического, но чем больше игр в серии, тем это различие меньше. По существу, Кардано вплотную подошёл к понятию вероятности и заявил о законе больших чисел.
Голландец Кристиан Гюйгенс [30]был довольно продвинутый чел: в XVII веке знал пять языков, играл на скрипке, лютне и клавесине, в 13 лет построил себе токарный станок. В 13 лет! У нас дети вон ходят на коньки или в бассейн, в лучшем случае – на изо, а Гюйгенс, он вот ходил в станкостроительный кружок.
Он ещё наловчился вырезывать из стекла линзы и их тряпочкой шлифовать, после чего собрал окуляр для телескопа и обнаружил кольца Сатурна [31] Галилей их тоже обнаружил, но так и не понял, что это такое, а Гюйгенс понял.
, изобрёл маятниковые часы и – внимание – диапроектор, чтобы дичайше смотреть « Ну, погоди!» на слайдах. Часы его конструкции были точны, недороги и быстро распространились по всему миру. Гюйгенс же и написал первую книгу о вероятности. Такой был замечательный голландец, ну вы понимаете, что ему там послужило вдохновением.
А дальше вот что происходит: развивается геодезия, астрономия и стрельба, например. И теория вероятностей начинает применяться в теории ошибок наблюдений, как ложатся пули вокруг мишени. И тут надо сказать про Лапласа, Пьера-Симона. Он опубликовал два закона распределения частотности ошибок, и второй из них называют гауссовым распределением. Дело в том, что большинство случайных величин из реальной жизни, таких, например, как ошибки измерений, стрельбы и прочего, могут быть представлены как анализ большого числа сравнительно малых ошибок, каждая из которых вызвана действием отдельной причины, не зависящей от остальных. Например, дрожанием руки – рука же каждый раз по-разному дёргается.
А второй закон Лапласа гласит, что частота ошибок – степенная функция от квадрата ошибки, что сейчас называется нормальным распределением, а кривая – гауссианой. Гаусс (кстати, Карл), конечно, тоже был очень развитым ребёнком, но в то время ему было два года от роду, и он пока плоховато ещё законы формулировал. Но он подрос и авторитетом задавил бедного Лапласа.
Сейчас я хочу пробежаться по некоторым терминам – для кого-то это будет повторением, но всё равно не повредит. Вероятность чаще всего обозначается латинской буквой p ( от слова probability) . Это всегда число, которое лежит между нулём и единицей, ну или от нуля и до 100 %. «Про цент» – это по-латински «поделить на сто», поэтому 100 % и есть единица. Если вероятность события – ноль, это значит, что оно не может произойти. Если вероятность равна единице, то оно обязательно произойдёт. В этом основная идея.
Один из базовых принципов – это идея независимости. Вероятность обозначает шансы наступления какого-либо события. Например, результата какого-либо эксперимента вроде броска монеты. Вероятность того, что если вы подбросите монету и она упадёт орлом, равна одной второй, потому что у неё одинаковые шансы упасть орлом или решкой. Независимые эксперименты – это такие эксперименты, которые происходят – сюрприз! – вне зависимости друг от друга.
Если вы бросаете монету два раза, результат первого броска никак не влияет на результат второго, и тогда мы говорим, что это независимые величины. Между ними нет никакой связи.
Читать дальше
Конец ознакомительного отрывка
Купить книгу