Карл Андерсон - Аналитическая культура. От сбора данных до бизнес-результатов

Здесь есть возможность читать онлайн «Карл Андерсон - Аналитическая культура. От сбора данных до бизнес-результатов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент МИФ без БК, Жанр: popular_business, stock, foreign_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Аналитическая культура. От сбора данных до бизнес-результатов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Аналитическая культура. От сбора данных до бизнес-результатов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Это практическое пошаговое руководство по внедрению в вашей организации управления на основе данных. Карл Андерсон, директор по аналитике в компании Warby Parker, провел интервью с ведущими аналитиками и учеными и собрал кейсы, которые и легли в основу данной книги. Вы узнаете, какие процессы следует ввести на всех уровнях и как именно это сделать, с какими трудностями можно столкнуться на этом пути и как их преодолеть. Автор рассказывает об аналитической цепочке ценностей, которая поможет принимать правильные решения и достигать лучших бизнес-результатов.
Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.
На русском языке публикуется впервые.

Аналитическая культура. От сбора данных до бизнес-результатов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Аналитическая культура. От сбора данных до бизнес-результатов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оптимизация

Как улучшить наши процессы? Какое решение сложной проблемы будет самым эффективным? Например, каков лучший способ оптимизировать ИТ-инфраструктуру с учетом многочисленных конфликтующих ограничений с точки зрения бизнеса и ресурсов?

Представленные идеи формируют график из книги Дэвенпорта и Харриса Competing on Analytics (2006) [16] Издана на русском языке: Дэвенпорт Т., Харрис Д. Аналитика как конкурентное преимущество. Новая наука побеждать. М.: BestBusinessBooks, 2010. Прим. ред. , [17] Несмотря на то что книга Дэвенпорта и Харриса появилась на два года раньше, этот источник называют «адаптация графика, сделанного компанией SAS». , как показано на рис. 1.4.

Рис 14 Бизнесинформация и аналитика из книги Дэвенпорта и Харриса - фото 8

Рис. 1.4. «Бизнес-информация и аналитика» из книги Дэвенпорта и Харриса Competing on Analytics

Источник: HBR Press, ранее взято из уровней аналитических данных Джима Дэвиса

(Как видите, табл. 1.2основана на этом графике. Можно соотнести первые четыре уровня графика с верхним рядом таблицы, а вторые четыре – с нижним рядом.)

Мне нравится общая концепция и названия. Однако, исходя из того, как Дэвис (2009) и Дэвенпорт и Харрис (2007) представили свои идеи, особенно с большой восходящей стрелой, можно интерпретировать эти уровни как последовательность, своего рода иерархию, где подняться на следующий уровень можно только при условии прохождения предыдущего.

Эту псевдопрогрессию часто называют зрелостью аналитических данных. Если забьете в поисковую строку Google ключевые слова «analytics maturity», то поймете, что я имею в виду. Многочисленные специалисты представляют этот график как набор последовательных шагов для достижения цели, где односторонние стрелки указывают переход на новый уровень.

Аналитическая работа отличается от этого представления: в одно и то же время разные подразделения компании могут проводить анализ разной степени сложности.

Рон Шевлин рационально отмечает [18]:

С точки зрения возможностей нет причин, почему компания не может прогнозировать, например, объем продаж («уровень» 6), не зная, в чем конкретно «проблема» с продажами («уровень» 3)… Но как я, будучи руководителем, должен отвечать на вопрос «Какие действия нужно предпринять немедленно?» без понимания «Что будет, если этот тренд продолжится?» и «Что произойдет дальше?» («уровни» 6 и 7)?

Мне кажется, верный способ интерпретации – подумать о том, что максимальный уровень развития аналитики в компании положительно коррелирует с уровнем инвестиций в аналитику, использованием данных и прочими составляющими аналитической конкурентоспособности, о которой говорят Дэвенпорт и Харрис. Например, если аналитическая команда состоит из кандидатов и докторов наук, перед которыми поставлена задача оптимизировать глобальную цепочку сбыта, очевидно, что компания серьезно инвестирует в направление работы с данными. Если в компании принято работать только с оповещениями и специальными отчетами, значит, она в меньшей степени инвестирует в аналитическое направление и для нее в меньшей степени характерно управление на основе данных.

Можно предположить, что более сложная аналитика по умолчанию лучше и что она способна сделать компанию более конкурентоспособной. Так ли это на самом деле? В интереснейшем исследовании [19], проведенном MIT Sloan Management Review совместно с IBM Institute for Business Value, были опрошены 3 тыс. руководителей и специалистов по работе с данными в 30 отраслях: как они используют аналитическую работу и что думают о ее ценности?

Один из вопросов касался конкурентного положения компании на рынке, и для него были предложены четыре ответа:

1) значительно лучше, чем у других компаний отрасли;

2) несколько лучше, чем у других компаний отрасли;

3) наравне с другими компаниями;

4) несколько или значительно хуже, чем у других компаний отрасли.

Компании, выбравшие первый и четвертый варианты ответов, считались лидерами и аутсайдерами отрасли соответственно. Что интересно, от аутсайдеров компании-лидеры отличались следующим:

• в пять раз чаще использовали аналитику;

• в три раза чаще использовали продвинутую аналитику ;

• в два раза чаще использовали аналитику для управления своей операционной деятельностью;

• в два раза чаще использовали аналитику для составления стратегий будущего развития.

Несомненно, есть факторы, осложняющие эту методологию. Во-первых, так называемая ошибка выжившего [20]. Во-вторых, корреляция между успешностью компании и ее размером (насколько известно, выручка компаний, участвовавших в опросе, была в диапазоне от менее 500 млн до более чем 10 млрд долл.). Возможно, только у более крупных и более успешных организаций имелось достаточно ресурсов на создание и обеспечение функций аналитических отделов, способных на разработку моделей для имитационного моделирования цепочки поставок. Тем не менее все пришли к единому мнению, что более качественная и глубокая аналитика повышает ценность бизнеса.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Аналитическая культура. От сбора данных до бизнес-результатов»

Представляем Вашему вниманию похожие книги на «Аналитическая культура. От сбора данных до бизнес-результатов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Аналитическая культура. От сбора данных до бизнес-результатов»

Обсуждение, отзывы о книге «Аналитическая культура. От сбора данных до бизнес-результатов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x