Абсолютное время, не подвластное никаким воздействиям, с раз и навсегда заданным темпом – вот исходная аксиома ньютоновской механики. Установленные и проверенные классической механикой свойства времени – это достижение, которое останется в науке навсегда. Однако и основоположникам классической механики было очевидно, что от четкого выяснения проявляющихся в макромире свойств времени до понимания его глубинного физического содержания еще очень далеко. Лишь в начале XX века, спустя почти триста лет, благодаря усилиям Альберта Эйнштейна и других ученых был сделан следующий крупный шаг на этом пути. Появляется теория относительности, которая впоследствии станет основой современного физического миропонимания.
Ньютоновская механика главенствует в макромире и применима только в нем. Как выяснилось, область ее ограничивается двумя важнейшими положениями:
1. Скорости движений, исследуемые классической механикой, должны быть малы по сравнению со скоростью света.
2. Силы тяготения, управляющие движениями тел, должны быть слабыми, чтобы эти тела не могли разогнаться до скоростей, сопоставимых со скоростью света.
Преодолеть эти границы и расширить поле деятельности физики удалось благодаря теории относительности. Она не отменила классическую механику, а вместила ее в себя как частную теорию, действующую при должных обстоятельствах в условиях ограниченной скорости и сил тяготения. Теория относительности выявила новые свойства времени.
Эти новые свойства, как и в классической механике, проявляются, в первую очередь, в движении физических тел. При этом время оказалось тесно связанным с пространством. Вместе они образуют единый четырехмерный мир, где и происходят все физические явления. Сцепленность времени и пространства, их единство обнаруживается тогда, когда скорости движения тел приближаются к скорости света.
Теория относительности не признает абсолютность времени. Во-первых, понятие одновременности становится совершенно бессмысленным. В ньютоновской механике два события, одновременность которых зафиксирована по каким-то одним часам, остаются одновременными и по всем другим часам, движущимся относительно первых и относительно друг друга. Теория относительности же опровергает это. Безусловно, существует приближенная одновременность, при условии, что скорость часов мала по сравнению со скоростью света – собственно, это и есть сфера применения ньютоновской механики. Но когда скорость достигает скорости света, два события, зафиксированные как одновременные по одним часам, оказываются случившимися в существенно разные моменты времени по другим часам, очень быстро движущимся относительно первых.
Во-вторых, теперь и сам темп времени зависит от движения и поэтому становится относительным. Часы, движущиеся относительно нас, всегда представляются нам отстающими. Это означает, что измеряемое ими время замедлено в своем беге. Разумеется, и в этом случае эффект будет заметен только при больших скоростях.
И, наконец, в-третьих, открытия Эйнштейна показывают, что на время воздействует гравитация, она влияет на его темп: время течет медленнее там, где имеются силы тяготения. Чем сильнее тяготение, тем медленнее течет время. При земном тяготении различие в темпе времени практически незаметно. Однако оно есть: для человека, живущего на последнем этаже небоскреба, время будет течь чуть быстрее, чем для человека на первом этаже. При наличии очень сильного тяготения, к примеру, на поверхности Солнца бег времени становится еще медленнее, на поверхности нейтронной звезды это уже будет не бег, а скорее ходьба. И, наконец, вблизи черной дыры время замедляется настолько, что почти останавливается и замирает. Черные дыры обладают огромной гравитационной тягой, в миллионы раз превышающей тягу Земли.
Если бы нам удалось приблизиться к черной дыре, воздействие сил тяготения на наше время стало бы колоссальным. Предположим, что кто-то с Земли наблюдал бы за нашими перемещениями у черной дыры. Он бы увидел, что время для нас существенно замедлилось. Для нас прошло бы всего несколько минут, в то время как для наблюдателя – годы. Проведя на орбите черной дыры всего пару часов, мы сможем вернуться на Землю, когда здесь пройдет несколько десятилетий. То есть мы окажемся в будущем.
А возможны ли путешествия в прошлое? Как ни странно, теоретически такое возможно. Благодаря еще одному феномену, предсказанному Эйнштейном, который он назвал «червоточиной» или «кротовой норой». Если червоточины существуют, то они предположительно служат своеобразными проходами в пространственно-временном континууме, связывающими не только две точки в пространстве, но и два момента времени.
Читать дальше