1) Масса элементарных частиц, протонов, нейтронов и электронов абсолютно неизменна независимо от скорости, и структуры в которую они входят. Пояснения: раньше бытовало мнение, что например при реакции расщепления ядра урана, преодолев сильные взаимодействия, и набрав какую-то скорость, выделив тепло, масса системы должна понизится, что происходит из закона о сохранении массы. На самом же деле есть такое мнение, что масса этих частиц остаётся неизменной, меняется лишь их расположение и структура во вселенной. То есть часть их энергии, представлена не массой а неким взаимодействием. Чтобы понять, что имеется ввиду: представим ситуацию, абсолютный вакуум, где-то между вселенными, в нём на расстояние 2 метра помещено две частицы, имеющие массы протонов. Они под действием силы гравитационной постоянной и собственных масс постепенно сближаются, за счёт притяжения. Меняется ли энергия системы? Без сомнения, нет, потенциальная превращается в кинетическую, но энергия не меняется. Теперь они сблизились, и получили инерцию, и тут внешняя сила останавливает их сближения, полностью абсорбировав кинетическую энергию. Изменится ли энергия системы? Да, она уменьшится, но изменится ли масса? Нет, масса останется не изменой, энергия расположения не имеет массы. Аналогично не имеет массы и энергия расположения нескольких элементарных частиц в ядре атома. Они имеют энергию расположения, близкой по природе энергии тех двух частиц, которые мы рассмотрели, но эта энергия не имеет массы. Поэтому вполне возможно, что масса продуктов реакции расщепления ядра не изменяется.
Кто-то быть может выдвинет противоречащую здравому смыслу теорию, что если бы энергия не имела массы, то её можно было бы запасти неограниченно много? Что ж пусть попробует, наврядли ему получится сконструировать ядро, которое при расщеплении будет выделять энергию большую, чем аннигиляция. Стоит также учитывать, что данная энергия в принципе не может быть больше энергии аннигиляции, просто из-за того что величина энергии аннигиляции прямо связано с пределом гравитационного взаимодействия, см. ниже.
В итоге, кто-то опять может выдвинуть сумасшедшую теорию, что если рекомбинировать вещество из энергии высокой плотности, сразу в тяжёлый атом, потом получить энергию расщепления, и потом аннигилировать полученное, то мы получим из ниоткуда энергию расщепления. Ответ отрицательный, чтобы сделать тяжёлый атом, надо затратить на столько больше энергии, сколько он выделит при расщеплении, (стоит учесть, что не всегда при расщеплении энергия выделяется, при расщеплении маленьких ядер, она поглощается, и наоборот при слиянии выделяется) поскольку при рекомбинации энергии в материю производятся лишь элементарные частицы, а не готовые тяжёлые ядра.
Возникает другой вопрос, неужели тогда при термоядерных реакциях масса не меняется, откуда берётся энергия там. Тут стоит разделить все термоядерные реакции на два типа, а именно термоядерные реакции смены структуры ядра, при которых не происходит изменения самих элементарных частиц. И термоядерные реакции, при которых изменяются сами элементарные частицы, например протон превращается в нейтрон, оба этих типа реакций относят к термоядерным, но их суть принципиально отличается. При первом типе реакций, масса не меняется, при втором, меняется.
Надеюсь, на более простую несостыковку данной теории с действительностью а именно на то, что массы элементарных частиц дробны. Можно объяснит кратко, различие в изотопном составе…"
"… Что такое скорость света и почему эм цэ квадрат, а не эм вэ квадрат пополам? Обычно после аннигиляции свет излучается с равной скоростью во всех направлениях. Представим процесс аннигиляции и выделения энергии упрощённо, в виде двух пучков, один бьёт в лево, другой вправо. Их суммарная мощность (mv^2)/2 + (mv^2)/2 в сумме это и будет (mv^2) при сравнении формулы энергии (mc^2), где v = 300 тысяч км в сек, можно сделать вывод, что по сути скорость света, есть не предел, а просто та скорость на которую хватает энергии вещества при полном преобразовании массы в энергию. Т. е. если бы энергоёмкость массы была выше, скорость света была бы быстрее. Поэтому даже сверхновые звёзды при взрыве не могут превзойти скорость света, у энергии есть конечная масса и энергоёмкость, которая не позволяет ей разогнать себя до скорости выше скорости света. Фотон же, не является элементарной частицей, а является элементарной порцией энергии которая если уж выделилась, должна быть потрачена, только на одно, на нагрев, но греть ей нечего, или набор скорости. Поэтому все элементарные порции энергии, случайно покинув в процессе излучения вещество, всегда тратят всю энергию на набор скорости, в миг своего образования, и потому не могут быть не подвижными. Фотон можно догнать, и лететь с ним рядом, он будет относительно неподвижным, но, дотронувшись до него любое тело не минуемо абсорбирует его, и если излучит, то снова со скоростью света. При этом не произойдёт нарушения закона о сохранении импульса, поскольку крайне малый импульс фотона будет вычтен, из поймавшего его тела. Трудно сказать каковы условия абсорбирования фотона, ясно одно, его можно абсорбировать на скоростях минимум в 2-3 раза превышающих скорость света, иначе бы мы не видели света звёзд навстречу которым мы движемся. При этом стоит отметить, что если два тела, врежутся друг в друга на скоростях выше скорости света, то они пройдут друг сквозь друга подобно нейтрино. При этом в случае, если хотя бы у одного из тел, будет чрезмерно высокая плотность, возможно столкновение друг с другом отдельных атомов и их аннигиляция, что может привести к печальным последствиям, например при попытке пролететь на сверхсветовом звездолёте через звезду, особенно нейтронную. Также при полёте на сверх световом звездолёте через фотосферу звезды, может быть абсорбировано значительное количество фотонов, что приведёт к быстрому нагреву корабля до Т=3000-4000 градусов. Причём сколь бы не был короток по времени контакт с данными фотонами, аппарат неизбежно должен нагреться до температур сопоставимых с теми, через зоны которых он будет пролетать, и нагреется не только его обшивка, но и всё, что внутри.
Читать дальше