Simon Hawke - The Nautilus Sanction
Здесь есть возможность читать онлайн «Simon Hawke - The Nautilus Sanction» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Фантастика и фэнтези, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:The Nautilus Sanction
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
The Nautilus Sanction: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Nautilus Sanction»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
The Nautilus Sanction — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Nautilus Sanction», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
“How can that be?” said Verne. “How can you maintain an air supply allowing a trip of such duration? What manner of propulsion could achieve such a feat?”
“The Nautilus manufactures its own oxygen from seawater,” Drakov said. “Unwanted gases such as carbon dioxide and carbon monoxide are disposed of overboard. As for our propulsion, Mr. Verne, our engines are steam turbines driven by the power of the universe, a power humanity will not discover in this century.”
“I’ve not heard such nonsense in my life,” said Land.
“Then how do you explain where you find yourself, Mr. Land?” said Drakov.
“What is this power of the universe?” said Verne. He had forgotten his meal.
“It is called nuclear fission, Mr. Verne,” said Drakov. “The sun is powered by a nuclear reaction process called fusion. Nuclear fusion powers stars. Nuclear fission is similar, in a manner of speaking. It is the process by which the atom is split.”
“But… that’s contrary to the laws of physics!” Verne said. “There is no power on earth which can split the atom!”
“Say rather that such power has not been discovered in your time,” said Drakov. “Even the men whose work led to the discovery believed as you do. Einstein, Planck, Bohr, Fermi, even they were not sure it was possible. Or, should I say, none of them will be sure it is possible? For that time has not yet come. Please, Mr. Verne, do eat. Your food is growing cold.”
Verne started to pick at his food. His hand was shaking. For Land, it was all incomprehensible. For Lucas, Finn and Andre, it was all familiar, yet frightening. They had become part of a temporal contamination which seemed to be beyond their ability to adjust. They could only sit and listen in mute fascination as a man born in the 19th century, but educated in the 27th, explained the concept of nuclear energy to an author who had foreseen-or would he foresee as a result of what was now happening? — the very vessel they now sailed in beneath the sea.
“Mr. Verne,” said Drakov, “you are a man of imagination to whom science is an avocation. Perhaps you will better understand when I explain to you how this discovery came about. Within a few short years, within your own lifetime, Mr. Verne, the first of two discoveries which will change the world will be made. On the eighth of November, in 1895, at the Julius-Maximilian University of Wurzburg, Professor Wilhelm Konrad Roentgen will discover X rays. He will be experimenting with a glass tube through which he will pass gas and an electric current. He will cover the tube with dark paper and turn on the voltage, sending glowing gas streaming through the tube. In the darkened room, light will not come through, being blocked off by the paper, but Professor Roentgen will observe a small glow coming from a table upon which a plate of barium platinocyanide crystals was kept. Upon turning off his voltage, he will observe this glow die out. Puzzled by this phenomenon, he will continue to experiment until he concludes that some unknown ray was being produced in his glass tube, one capable of passing through the dark paper and causing the fluorescence in the crystals. Not knowing the cause or nature of this phenomenon, he will call it an X ray.
“Further experimentation will lead him to discover these X rays produce an effect upon a photographic plate and that the rays are stopped by bones, but not by flesh. The result will be X ray photography, which will aid in diagnosis and revolutionize medical science. Physicians will be able to see inside the body prior to surgery. A man named Thomas Edison will build a device called an X ray fluoroscope, consisting of an X ray tube and a screen covered with crystals of barium platinocyanide. Upon striking the screen, the X rays will produce light visible to the naked eye. Any portion of the body placed between the X ray tube and the screen will produce an outline of the bones and organs within. Unfortunately, it will take time before the hazards of the X ray will be understood.
“Researchers who will repeatedly expose themselves to X rays will sustain severe burns and if this practice is continued, as it shall be, it will result in death. It will be discovered that exposure to X rays over a prolonged period can cause harm to the eyes, loss of hair, ulceration, inhibition of bone growth, sterility and damage to the blood cells. Men will learn that all living tissue can be destroyed if exposed to a sufficient amount of radiation, a term which will be strange to you, but I will endeavor to explain. You may have noticed that everyone aboard this ship wears a small glass cylinder containing a photographic film, something invented after the photographic plate. This device is called a dosimeter. Its purpose is to measure the amount of radiation one is exposed to.”
“You mean there is danger to us now?” said Verne.
“There is no cause for alarm. You will understand more presently. For now, let us return to the discovery of X rays, which will lead to the additional discovery that penetrating rays are also given off by certain crystals of an element known as uranium. In studying this phenomenon, Pierre and Marie Curie will give it a name-radioactivity.
“The Curies will embark upon research in an attempt to isolate the substance in uranium responsible for this phenomenon. In processing uranium ore, they will discover an element called radium. Pierre Curie will die upon being struck by a carriage in the street, but both his wife, Marie, and their daughter, Irene, who will carry on the work, will perish from exposure to radiation.
“Extensive scientific inquiry into the nature of this thing called radiation will establish the nature of a radioactive substance-its atoms are unstable. They disintegrate and become another element. Uranium becomes thorium. Thorium turns to radium. Radium becomes a gas called radon and so forth. This is known as nuclear disintegration and it results in the release of rays, or particles. The amount of time it takes for such a substance to decay in this manner to one half of its initial amount is called one half-life. Radon has a half-life of approximately four days. Certain types of uranium, on the other hand, can have a half-life of four and one half billion years. The shorter the half-life, the more atoms disintegrate per second.
“I mentioned two significant discoveries. The first will be that an element can be made radioactive. The second will come with the splitting of the atom. In 1932, an Englishman named Sir James Chadwick will discover a particle called a neutron. In 1934, Irene Curie and her husband, Frederic Joliot, will experiment with polonium and aluminum in their study of neutrons. They will discover that when alpha particles-a type of radiation-released from the polonium strike the aluminum, neutrons will be released, as well as electrons. Further, they will discover that the aluminum will continue to emit electrons for a short while after the polonium has been removed. In other words, they will find that an element which is not ordinarily radioactive can be made so artificially. When they bombard the aluminum with alpha particles, they will transform its atoms into the radioactive element radiophosphorous and this will be the first creation of artificially produced radioactive isotopes. You will find much of this unfamiliar and confusing, Mr. Verne, but there are books in the library we have aboard that explain all this in far greater detail. For our purposes now, I am simplifying as much as possible.
“These neutrons easily penetrate solid substances,” Drakov went on. “In the year 1938, two Germans named Otto Hahn and Fritz Strassmann will bombard uranium with neutrons. They will be astonished to find this experiment produce three light elements named barium, lanthanum and cerium. It will make no sense to them. They will realize these elements could only have come from the uranium, but this transmutation would be against everything known in science. They, will see the evidence before their eyes, but be reluctant to challenge the authority of eminent physicists such as Albert Einstein, Max Planck, Niels Bohr and-Enrico Fermi. They will report their discovery, but refrain from making any conclusions about it, stressing they might have made errors in their observations.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «The Nautilus Sanction»
Представляем Вашему вниманию похожие книги на «The Nautilus Sanction» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «The Nautilus Sanction» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.