Какое значение имеет кислород в онкологических клетках?
Вся предшествующая история изучения особенностей энергетики онкоклетки связана с попытками обосновывать ее исходя из отношений их к кислороду. Так, известный исследователь Варбург в 1927 г. писал о высокой степени гликолиза [5] Глико́лиз – ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ. – Примеч. ред.
в опухолях. Он же выдвинул положение: «Без гликолиза нет роста опухоли». Опухоли хорошо развиваются при отсутствии кислорода, если есть глюкоза.
Точнее говоря, особенность онкоклеток заключается в повышении скорости гликолиза (как аэробного, так и анаэробного) и увеличении продукции лактата [6] Лактат – молочная кислота. – Примеч. ред.
. Характерная для многих опухолей повышенная секреция лактата получила название «эффект Варбурга». Анаэробный гликолитический способ энергообразования в здоровом организме человека применяется ограниченно, как резервный выход, всегда сопровождается перерасходом энергетического сырья и смертельно опасным закислением нашего организма.
Затем появились данные профессора Поппа, который показал, что злокачественные клетки, как и анаэробные патогенные бактерии и вирусы, не могут жить в присутствии кислорода. Это обнадеживало и предполагало пути поиска усиления подачи кислорода в онкоклетки в лечебных целях. Однако это было ошибкой лауреата Нобелевской премии. В дальнейшем появились работы, показывающие, что онкологические клетки даже в присутствии кислорода не способны им воспользоваться (аэробный гликолиз). Изменение энергетики в раковых клетках по-иному называют нарушением «эффекта Пастера». Все живые ткани, являющиеся метаболически активными, способны к анаэробному гликолизу, однако большинство их не гликолизирует в аэробных условиях. Эффект блокирования гликолиза со стороны дыхания и получил название «эффект Пастера».
Однако и это не давало объяснения сути проблемы. Оказалось, что для опухолевой клетки характерно отсутствие эффекта Пастера: анаэробное расщепление глюкозы не только идет в присутствии кислорода, но и тормозит тканевое дыхание. Это так называемый обратный пастеровский эффект (эффект Кребтри). Именно Кребтри окончательно подтвердил, что для онкоклеток проблемы с кислородом вообще не имеют никакого значения. Они свободно существуют в его присутствии.
Следовательно, нарушенная энергетика онкоклетки связана не с кислородом, а с водородом. Вернее, с неспособностью пропускать его через энергетическую топку цикла Кребса. Это может
произойти, когда электрозаряд на мембранах митохондрий настолько слаб, что становится невозможным запускать стартерные электрические механизмы работы митохондрий. Проблема, оказывается, в неверном заряде их мембран, связанном с нарушением в голограмме всего зарядомагнитного каркаса клетки. Энергоинформационная матрица онкоклетки нарушена, а это имеет значение для поддержания парциального давления ионов водорода, входящих через мембраны в митохондрии. Они попросту разряжены.
Вторично происходит слом сенсорных механизмов и разрыв ферментных цепочек, то есть имеет место отсутствие неких ферментов в цепочке и утрата чувствительности генома митохондриальной ДНК на определенный состав субстратного поля в цитозоле.
Однако парциальное давление анионов водорода в жидкой среде можно увеличивать в разы, если не на порядок. Такое увеличение насыщенности субстрата водородом в жидком цитозоле клетки позволяет запустить те же механизмы затягивания кислорода внутрь клетки и его использования в ней, которые в данном случае действуют обходным путем, то есть непосредственно в цитозоле клетки, даже при условии отсутствия надлежащих для этого ферментов в митохондриях. Таким образом, в клетке запускаются иные дыхательные процессы, что автоматически отключает гликолизные. Меняется субстратное поле цитозоля. При отключении гликолизных процессов в клетке подключаются многочисленные программы нормальных клеток, в том числе программы их апоптоза [7] Апопто́з (от греч. απόπτωσις – опадание листьев) – программируемая клеточная смерть, регулируемый процесс самоликвидации на клеточном уровне, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. – Примеч. ред.
и постепенной репарации разорванной ферментной цепи, а также сенсорных механизмов мембран, чувствительности митохондрий к составу их субстратного поля.
Читать дальше