Свою медицинскую деятельность я разделяю на два этапа, до 2000 годов, когда медицинские знания я черпал из книг, журналов, лекций в институтах, и после, когда я открыл мир интернета и смог слушать онлайн-лекции ведущих профессоров, читать медицинские статьи, сразу после их выхода.
2000 год ознаменовался еще одним событием – ученые расшифровали человеческий геном, все цепочки человеческих ДНК секвенировали, то есть разделили на составные части – гены. Ученые, закончив проект «Геном человека», стали изучать новую тему – «Микробиом человека».
Медицинская наука стала развиваться по экспоненте, устремившейся ввысь, появлялись все более мощные компьютеры, и в наше время любой человек может узнать, из каких генов состоит его организм, какие наследственные болезни он имеет и какие риски тяжелых опасных заболеваний его ждут в будущем. Я стал следить за новыми открытиями в этой области. Первое, что поразило как ученых, так и меня, что человек имеет всего 21 тысячу генов, а маленькая блоха, водяная дафния, – 31 тысячу. Как так, сложный организм управляется меньшим числом генов, чем у блохи?
Нашим телом управляют не только 21 тысяча человеческих генов. Каждый из нас является суперорганизмом – мы находимся в симбиозе с более мелкими живыми существами, которые живут вместе и сообща управляют нашим общим телом.
Наши собственные клетки, хоть и имеют гораздо больший размер и вес, уступают в численности – в соотношении один к десяти – клеткам живущих на нас и внутри нас живых существ.
До недавних пор изучение микробов зависело исключительно от возможности культивировать их в чашках Петри, наполненных «бульоном» из крови, костного мозга или сахаров в желеобразной взвеси. Но проблема в том, что большинство видов, живущих в человеческом кишечнике, погибают от контакта с кислородом: они так устроены, что не переносят его.
Поэтому и заблуждались врачи, ставя диагноз «дисбактериоз» и давая детям полезные микробы в таблетках, по сути, они лечили не болезнь ребенка, а «диагноз в чашке Петри». Современная технология секвенирования ДНК стала дешевле и быстрее именно благодаря стараниям ученых, работающих над проектом «Геном человека». Теперь ни зависимость от чашек Петри, ни избыток кислорода не могли помешать изучению наших микроскопических защитников. Ученые, используя значительно меньшие средства и меньшее время, смогли «прочесть» в тысячи раз большее количество ДНК, чем в проекте «Геном человека», изучить почти все ДНК микробов, живущих в восемнадцати различных средах на человеческом теле и внутри него.
Работа продолжается, открытия множатся, я пытаюсь разобраться в них сам и помочь всем моим читателям понять, зачем это нужно знать и зависит ли от микробиома здоровье наших детей.
Микробы на миллиард лет старше нас!
Мы развивались бок о бок с микробами, задолго до того, как сделались людьми. Оказывается, еще до того, как наши далекие предки стали млекопитающими, тело любого животного – от крошечной плодовой мушки до гигантского кита – вмещало миллионы микробов.
Мы раньше верили, что большинство из этих микроорганизмов – паразиты и переносчики болезней, но теперь выяснилось, что все они приносят человеку огромную пользу. А паразиты встречаются в сотых долях процентов, и иммунитет человека их легко выявляет и нейтрализует.
Стратегии выживания в природе многочисленны и разнообразны, не только борьба, но и дружеское взаимодействие с микробами стало движущей силой эволюционной борьбы еще 1,2 миллиарда лет назад, когда только появились живые существа, состоящие более чем из одной клетки.
Чем дефицитнее корм, тем чаще живые существа обращаются к микробам. Разберем пример с коровами. Грубые корма, составляющие их рацион, требуют особых белков, так называемых ферментов (или энзимов) для расщепления плотных молекул, из которых состоят оболочки клеток травянистых растений. С учетом смены поколений коров ждать, пока в результате случайной мутации появится ген, отвечающий за выработку подобных ферментов, пришлось бы не один миллион лет.
Более быстрый способ обрести способность добывать все полезные питательные вещества, заключенные в растительном корме, – «нанять» специалистов со стороны – микробов.
В четырех камерах коровьего желудка обитают насчитывающие триллионы особей популяции микробов, размягчающих растительные волокна, и жвачка – шарик из твердых растительных волокон – перемещается туда-сюда между ртом коровы, где трава перемалывается механически, и желудком, где ферменты, вырабатываемые микробами, занимаются химическим расщеплением.
Читать дальше