Яков Перельман - Математика в занимательных рассказах

Здесь есть возможность читать онлайн «Яков Перельман - Математика в занимательных рассказах» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: ACT, Астрель, Жанр: Развлечения, Математика, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика в занимательных рассказах: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика в занимательных рассказах»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге раскрываются математические загадки, зашифрованные в приключенческих и фантастических рассказах известных авторов Герберта Уэллса, Жюля Верна, Курда Лассвица и др. Возможно ли путешествие на мыльном пузыре? Существует ли механизм для произвольного движения в четвертом измерении? Ответы на эти и другие — непременно интересные — вопросы любознательный читатель найдет здесь.

Математика в занимательных рассказах — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика в занимательных рассказах», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Более того: мы не заметили бы ни малейшей перемены в мире даже и в том случае, если бы все предметы увеличились (или уменьшились) в разных направлениях в неодинаковое число раз. Если мир изменяется таким образом, что все предметы увеличиваются, например, в восточном направлении, скажем, в 1000 раз, а в прочих направлениях остаются неизменными, то и такое чудовищное искажение прошло бы для нас совершенно незамеченным. Действительно, как мог бы я убедиться, что стол, за которым я сижу, вытянулся в восточном направлении в 1000 раз? Казалось бы, весьма простым способом: если прежняя его длина в этом направлении была один метр, то теперь она равна 1000 метрам. Достаточно только, значит, произвести измерение. Но не забудем, что, когда я поверну метровый стержень в восточном направлении, чтобы выполнить это измерение, стержень мой удлинится (как и все предметы мира) в 1000 раз, и длина стола в восточном направлении по-прежнему будет одинакова с длиною стержня; я буду считать ее, на основании проделанного измерения, равной 1 метру. Теперь понятно, почему мы никаким способом не в силах были бы обнаружить, что форма мира подверглась указанному искажению.

Германский математик проф. О. Дзиобек приводит в одной из своих статей еще более удивительные соображения.

«Представим себе зеркало с отражающей поверхностью произвольной кривизны — одно из тех уродующих зеркал, которые выставляются в балаганах для увеселения посетителей, забавляющихся своим карикатурным отражением. Обозначим реальный мир через А, а его искаженное изображение через В. Если некто стоит в мире А у рисовальной доски и чертит на ней линейкой и циркулем линии и фигуры, то уродливый двойник его в В занимается тем же делом. Но доска наблюдателя в А на наш взгляд — плоская, доска же в В — изогнутая. Наблюдатель в А проводит прямую линию, а отраженный наблюдатель в В — кривую (т. е. представляющуюся нам кривой). Когда в А чертится полный круг, то в В выполняется то же самое, но замкнутая линия мира В кажется нам не окружностью, а некоторой сложной кривой, быть может, даже двоякой кривизны. Когда наблюдатель в мире А берет в руки прямой масштаб с нанесенными на нем равными делениями, то в руках его двойника оказывается тот же масштаб, но для нас он не прямой, а изогнутый, и притом с неравными делениями.

Допустим теперь, что В — не зеркальное отражение, а реально существующий объект. Каким образом мог бы наблюдатель мира В узнать, что его мир и собственное его тело искажены, если искажение одинаково захватывает все измерения, всю обстановку? Никаким. Более того: наблюдатель в В будет думать о мире А то же, что наблюдатель в А думает о мире В ; он будет убежден, что мир А искажен. Свои линии он будет считать прямыми, а наши — искривленными, свою чертежную доску плоской, а нашу — изогнутой, свои масштабные деления равными, а наши — неравными. Между обоими наблюдателями и их мирами полнаявзаимность. Когда наблюдатель в А, любуясь формами „своей“ статуи Аполлона, взглянет на искаженное изваяние в мире В, он найдет его, конечно, безобразно изуродованным. Гармония форм исчезнет бесследно: руки чересчур длинны и тонки и т. п. Но что сказал бы наблюдатель из мира В1 Его Аполлон представился бы ему таким же совершенным, каким представляется нам наш, он будет превозносить его красоту и гармонию форм, а нашего Аполлона подвергнет уничтожающей критике: никакой пропорциональности, руки — бесформенные обрубки, и т. п.

Если предмет перед искажающей зеркальной поверхностью меняет свое положение — приближается, удаляется, отходит влево или вправо, — то изменяется и характер искажения. Искажения могут зависеть и от времени, если допустить, что кривизна отражающей поверхности непрестанно изменяется, порою исчезая вовсе (зеркало становится тогда плоским).

Отбросим теперь зеркало, которым мы пользовались только ради наглядности, и обобщим сказанное: если бы вся окружающая нас вселенная претерпела любое искажение, зависящее от места и времени, при условии, что искажение распространяется на все твердые тела, в частности на все измерительные инструменты и на наше тело, — то не было бы никакой возможности это искажение обнаружить».

__________________________________

Микроген Лассвица обладает способностью изменять не только пространственные размеры, но и быстроту течения времени. И здесь следует отметить, что изменение темпа времени в любое число раз не может быть никакими средствами обнаружено, если оно распространяется на все явления, совершающиеся во вселенной (или в ее изолированной части, за пределы которой наблюдатель не может проникнуть). Это станет понятнее, если напомним, что единственным мерилом времени являются для нас пространственные промежутки на измерителе времени — на часовом циферблате, на звездном небе и т. п. У нас нет никакой возможности убедиться, действительно ли часы идут равномерно: или Земля вращается равномерно, — как мы всегда допускаем. «Если бы сутки и их подразделения — часы, минуты, секунды — были неравномерны, если бы ход наших часов во времени менялся, если бы менялась и скорость вращения Земли вокруг оси и обращения вокруг Солнца, а также скорость обращения Луны вокруг Земли, если бы тому же закону изменяемости подвержены были и всякие иные мерила для времени, — мы не были бы в состоянии обнаружить этой изменяемости и все осталось бы для нас по-старому» (Дзиобек). Не заметили бы мы никакой перемены в мире даже и в том случае, если бы «в некоторый момент все часы согласно остановились, и прекратились все движения, все изменения в окружающем нас мире, а по истечении определенного промежутка времени все ожило бы вновь, продолжало двигаться и жить, — словно в сказке об окаменелом царстве, где с наивной смелостью предвосхищено то, что мы называем относительностью нашего мерила времени».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика в занимательных рассказах»

Представляем Вашему вниманию похожие книги на «Математика в занимательных рассказах» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика в занимательных рассказах»

Обсуждение, отзывы о книге «Математика в занимательных рассказах» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x