Не думаю, чтобы таким сопоставлением я заметно облегчил вам понимание огромности триллиона: звездные расстояния едва ли не труднее представлять себе, чем исполинские числа. Но полезно знать, по крайней мере, что оба представления — триллиона и звездных расстояний — одного порядка трудности.
V. Немного геометрии на спичках
Горизонтально и вертикально
Задача 32-я
Попросите товарища положить на стол одну спичку горизонтально. Он положит, разумеется, так:
Затем попросите его положить возле первой спички вторую спичку вертикально. Сделает он это примерно так:
Товарищ ваш и не подозревает, что вы его "поддели". Боюсь, что вы и сами этого не подозреваете. Ведь задача-то решена неверно!
Решение
Обе спички (рис. 45) горизонтальны! Вы удивлены?
Но подумайте: спичка, лежащая на горизонтальной поверхности стола, может ли иметь вертикальное направление? Вертикальное направление это направление сверху вниз, к земле (точнее, к центру земного шара), — а как бы вы ни положили спичку на стол, она не будет направлена к земле.
Девяносто девять человек из ста делают эту ошибку, — не исключая даже и иных математиков. Едва ли ваш товарищ будет тот сотый, который не попадет в просак.
Два четыреугольника
Задача 33-я
На рис. 46 изображен четыреугольник из 6 спичек, площадь которого вдвое больше площади квадрата со стороною, равною одной спичке. Так как длина спички вам известна — 5 см, то вы легко определите площадь вашего четыреугольника в сантиметрах: 5 x 10 = 50 кв. см.
Задача состоит в следующем: не изменяя длины обвода этого четыреугольника, изменить форму его так, чтобы площадь его уменьшилась вдвое, т.-е. равнялась 25 см.
Как это сделать?
Пусть читатель обратит внимание на то, что речь идет о составлении четыреугольной фигуры (а не непременно прямоугольной): углы новой фигуры не обязательно должны быть прямые.
Решение
Надо из 6-ти спичек сложить параллелограмм так, чтобы его высота равнялась одной спичке (рис. 47).
Такой параллелограмм, имеющий одинаковые основание и высоту с квадратом, должен иметь и одинаковую с ним площадь.
Что больше?
Задача 34-я
Ил 6-ти спичек сложены прямоугольник и равносторонний треугольник. Обводы этих фигур, конечно, одинаковы. А у какой больше площадь? (рис. 48).
Решение
Чтобы решить эту задачу, надо знать, как вычисляется площадь треугольника: умножают длину основания на высоту и полученное произведение делят пополам; или — что то же самое — умножают половину основания на высоту. В нашем треугольнике половина основания = одной спичке, т.-е. основанию прямоугольника. Если бы высоты этих фигур были одинаковы, то обе фигуры имели бы равные площади.
Но легко видеть, что высота треугольника меньше двух спичек, т.-е. меньше высоты прямоугольника. Значит, и площадь треугольника меньше площади прямоугольника.
Фигура с наибольшей площадью
Задача 35-я
Сейчас мы составили из 6-ти спичек прямоугольник и равносторонний треугольник. Но из того же числа спичек можно составить еще и другие фигуры, имеющие одинаковый обвод. Некоторые из этих фигур изображены на рис. 49.
Площади всех этих фигур различны. Спрашивается, у какой же из них площадь наибольшая ?
Решение
Мы уже знаем, что площадь фиг. 1 больше площади фиг. 2. Легко сообразить, что она больше также и площади фиг. 3 (сравните их высоты!)
Остается, следовательно, сравнить по величине площади фигуры 1, 4 и 5. Мы можем рассматривать все три фигуры, как шестиугольники с равными сторонами (у фиг. 1 два угла выпрямлены). В курсах геометрии доказывается, что из всех многоугольников с одинаковым числом сторон и одинаковым обводом наибольшую площадь имеет многоугольник правильный , т.-е. такой, у которого равны не только стороны, но и углы. Этому условию удовлетворяет фигура 5; она следовательно, и имеет наибольшую площадь, какую можно ограничить шестью спичками [6] Подробнее о вопросах этого рода — см. в моей книге "Занимательная геометрия на вольном воздухе и дома".
.
Покажем кстати, как можно сложить из спичек правильный шестиугольник.
Для этого нужно примкнуть друг к другу 6 равносторонних треугольников, как показано на рис. 50, и затем вынуть внутренние спички.
Мост из двух спичек
Задача 36-я
На рис. 51 вы видите остров, окруженный каналом. Ширина канала как раз равна длине одной спички, так что перебросить мостик через канал с помощью одной спички нельзя: невозможно опереться концами о берега канала.
Читать дальше