5. Повторите шаги 2 и 3. Продолжайте устанавливать различные типы взаимоотношений, меняя элементы проблемы и относительные слова, стимулируя появление новых идей.
Пример:здесь дизайнеры продолжили поиск дополнительных идей. Перебрав несколько типов взаимоотношений, они остановились на паре «холодильник сбоку от источника электричества», что позволило присоединить к нему небольшую резервную батарею, включающуюся в случае кратковременных перебоев с электроэнергией.
Перебрав возможные типы взаимоотношений и выбрав наилучшее решение, вы можете успешно устранять проблемы. Вот, например, один из парадоксов организации труда: чтобы сотрудники могли творчески реагировать на быстро меняющиеся условия, их надо наделять полномочиями, но в то же время следует сохранять достаточный контроль за действиями по достижению организационных целей. Элементами проблемы в этом случае могут стать «наделение полномочиями», «сотрудники», «организация», «контроль», «цели», «творческая реакция» и «управление». Изучив такой тип отношений, как «наделение полномочиями сотрудников», вы приходите к выводу о необходимости потратить время и энергию, чтобы вызвать в них доверие и привязанность к организации. Создание вовлеченности в работу, доверия и привязанности дает возможность держать компанию под контролем, при этом не контролируя работников, а, напротив, освобождая их.
Стратегия 6
Смотреть на другую сторону
При рассмотрении проблемы мы обычно предполагаем, что существуют определенные границы, в рамках которых и должно лежать решение. Очень часто, однако, оказывается, что границы воображаемые, а решение может находиться и за этими пределами. В 1872 году Рихард Дедекинд первым показал: математики обманывались, считая, что имеют дело с континуумом. По его доказательствам, для чисел континуума не существует. Внутри любого числового предела, например между 1 и 5, есть возможность вставить неограниченное количество чисел. К натуральным числам – 2, 3 и 4 – можно добавить бесконечное количество рациональных дробей типа ¾ или 118/119, а также бесконечное количество чисел иррациональных, например квадратный корень из 2, и место останется в любом случае. Это открытие стало известно как принцип дискретности.
Дискретность быстро стала ключевой темой в модернизме и сформировала новый тип научного, художественного и изобретательского мышления. Физик Людвиг Больцман вскоре продемонстрировал, что непрерывность в физике – такая же статистическая иллюзия, поскольку поведение атомов непредсказуемо. Французский художник Жорж Сёра использовал этот тип мышления, вводя новый метод письма – пуантилизм. Первую современную картину – «Воскресенье после полудня на острове Гранд-Жатт» – он написал тысячами цветных точек, диаметр каждой из которых был не больше трех миллиметров. На этом шедевре изображены около 50 человеческих фигур, собаки и обезьяна, и все это сводится к мелким мазкам краски, которые каким-то образом формируют гармоничное целое, излучающее при этом невероятное спокойствие. Томас Эдисон изобрел кинокамеру, которая тоже стала триумфом дискретности: 16 неподвижных фотографий в секунду наш глаз интерпретирует как движение.
Дедекинд сумел увидеть другую сторону непрерывности, изменив направление своих мыслей о ней. Так родилась блестящая догадка, породившая новый способ мышления в науке и искусстве. Рисунок ниже состоит из неправильных фигур, которые выглядят бессмысленными кусочками пазла. Но если сконцентрироваться на фоне – пространстве между фигурами, – вы заметите слово ЗАПАД. Если вы все еще не видите его, приложите линейку к верхней или нижней границе фигур, тогда оно выступит более явно.
Сосредоточившись на отрицательном пространстве, а не на фигурах, вы изменили угол зрения и увидели то, чего не могли видеть раньше. Вот что бывает, когда меняешь направление обзора и смотришь на другую сторону вещей. Допустим, вам предстоит организовать одиночный теннисный турнир по олимпийской системе. Всего участников 117. Каково минимальное число матчей, которое необходимо организовать для этого количества участников?
Столкнувшись с этой задачей, большинство начнут чертить диаграммы с парами соперников для каждого матча и количеством пустых номеров. Другие попытаются решить задачу математически. Ответ, однако, прост: нужно 116 матчей, и выяснить это просто без всяких сложных расчетов и графиков. Чтобы прийти к нему, смените направление мысли и думайте не о победителях каждого матча, а о проигравших. Поскольку олимпийская система предполагает, что победитель должен быть один, проигравших будет 116. Каждый из них проигрывает лишь единожды, поэтому матчей должно быть 116.
Читать дальше
Конец ознакомительного отрывка
Купить книгу