Исследования Д. Максвелла и И. Вышнеградского дали в руки инженерам такую схему проектирования регулятора, которая обеспечивала его устойчивую работу.
Они не только показали возможность построения математических моделей процессов регулирования работы сложных технических систем, но и доказали, что именно с построения такой модели и должно начинаться проектирование каждого регулирующего устройства.
Любое моделирование - неисчерпаемо сложно.
Но при создании модели для исследования практических задач не следует переусложнять ее и строить, так сказать, минимальную модель. А это всегда искусство, это талант исследователя: надо, чтобы она, с одной стороны, достаточно точно (с позиций практики) описывала процесс, а с другой - не была бы перегружена второстепенными деталями.
Первая модель, которую строил И. Вышнеградский, была, с точки зрения математика, совсем простая - она описывалась линейным дифференциальным уравнением третьего порядка с постоянными коэффициентами. Это значит, что сколько бы ни было параметров у регулирующего механизма, его поведение определяется только тремя величинами.
Следующий шаг - формулировка цели. Он также ответствен и труден, ибо надо на математическом языке сказать, что значит хороший регулятор. И впервые в работах Дж. Максвелла и И. Вышнеградского была найдена та формулировка цели управления, которая на протяжении целого столетия определяла развитие дисциплины.
С точки зрения инженера, требования к регулятору достаточно просты при любом изменении нагрузки он должен обеспечивать постоянство числа оборотов вала. Это требование можно перевести на язык математика очень большим числом способов. Но из них надо выбрать такую формулировку критерия, определяющего качество работы регулятора, чтобы выполнение требований критерия удовлетворяло требование практики.
И И. Вышнеградский и Дж. Максвелл в качестве такого критерия выбирают условия асимптотической устойчивости работы регулятора. Оно означает, что любое отклонение от заданного установившегося режима вращения с течением времени должно затухнуть, исчезнуть. Другими словами, при любом сбое в нагрузке режим вращения со временем должен восстановиться.
Заметим, что при такой конструкции регулятора число оборотов вала всегда будет немного отличаться от заданного. Но ведь инженеру не требуется абсолютное их совпадение. Важно, чтобы регулятор обеспечивал достаточно малое отклонение от расчетного режима.
А это требование может быть проверено лишь на практике.
Забегая вперед, скажем, что требование устойчивости оказалось не просто приемлемым - в течение целого столетия оно помогало проектантам создавать конструкции, вполне удовлетворяющие практику. Так удачное представление критерия на языке математики оказывается ключом при создании управляющих систем.
Последний, заключительный, этап исследования регулятора должен состоять в том, чтобы выбранное условие устойчивости записать в такой форме, в какой представлены требования к регулятору. Потом уже дело инженера так выбрать параметры регулятора, чтобы они удовлетворяли выбранным условиям. Этот этап требует математического анализа модели. В модели регулятора Уатта все оказалось более или менее просто. Теория И. Вышнеградского точно указывала границы допустимых значений параметров регулятора. Она позволяла подобрать "хороший регулятор" для любой системы "станок - паровая машина".
Новая теория позволила И. Вышнеградскому сделать ряд важных заключений:
а) не надо стремиться делать слишком малым трение о валик регулятора; б) не следует делать грузики слишком массивными; в) нужно стараться увеличивать степень неравномерности величины, характеризующей зависимость угловой скорости вала машины от величины внешней нагрузки ("без неравномерности нет регулятора" - основной тезис И. Вышнеградского).
Эти правила были совсем не очевидными. Более того, они противоречили тем тенденциям, которые возникали в инженерной практике тех времен, например, считалось, что чем меньше трение в регуляторе, тем он лучше. Так теоретическим путем были устранены трудности проектирования регуляторов Уатта, а рекомендации науки, казалось, противоречившие интуиции инженеров, не только утвердили престиж новой теории, но и сыграли немаловажную роль в утверждении математических методов в инженерных дисциплинах.
Итак, задача о регуляторе Уатта оказалась решенной полностью. Более того, было установлено, что как бы ни был устроен регулятор Уатта, он будет обеспечивать устойчивую работу трансмиссии, если только его параметры удовлетворяют перечисленным выше условиям. Заметим, что теория не дает однозначных рекомендаций. И эта неоднозначность очень удобна, поскольку она предоставляет инженеру, проектирующему регулятор, возможность варьировать в определенных границах параметры так, как ему удобно, и дает простор для творчества.
Читать дальше
Конец ознакомительного отрывка
Купить книгу