Уже к исходу третьей недели ребята начинают с удивлением замечать, что к ошибочным ответам с места учитель относится без унижающих достоинство слов, выражений, без насмешливых гримас и даже без сколько-нибудь обидных интонаций. И не только себе, но и ученикам не позволяет этого делать. В таких условиях можно рисковать. Можно пытаться вносить свои предложения вместе с самыми лучшими учащимися класса. Не надо только думать, что в новой обстановке каждый из вчерашних молчальников вдруг начнет на всех уроках выдавать одну за другой блестящие идеи. Этого не произойдет - поле их знаний еще в запустении. Но вот среди робких попыток и множества ошибок - дельная мысль! Учитель ее тут же подхватит, поддержит и выскажет самые добрые слова в адрес ее автора. Это традиционно. Но часто ли к слабоуспевающим приходят достойные всеобщего внимания озарения? В кои-то веки! И здесь - главное: по прошествии времени об этих взлетах нельзя забывать. Учитель всегда имеет возможность тактично и тонко напомнить о прошлой удаче, и эти напоминания часто становятся первоисточниками развития творческого мышления ребят. "Ты можешь!" - обязан напомнить учитель ученику при неудаче. "Он может!" всегда пусть помнят его товарищи. "Я могу!" - никогда не должен забывать сам ученик.
Навстречу ученику
В новой методике, как уже отмечалось, особое место занимают игры позволяя решать самые серьезные педагогические задачи. Ребята играют на уроках и переменах, на семейных вечерах и товарищеских встречах. Игры не оставляют равнодушными никого. Не участвовать в них просто невозможно. Иной раз, правда, трудно определить, где начинается игра и где кончается урок. Но так ли это важно, если учитель может плавно и без натяжек перевести серьезную работу на уроке в увлекательную игру и через минуту-другую так же естественно переключить ребят от потехи к делу. А иные игры могут даже не восприниматься ребятами как паузы в учебном процессе, но это все-таки игры.
Урок математики. В течение 10 минут ученики решали пример с алгебраическими преобразованиями. Работа далеко не простая, так как требует предельного сосредоточения внимания. Но вот пример закончен, и учитель сдвигает в сторону крыло доски (можно подготовить специальный плакат). На доске свидетельские показания.
Браун. Я не делал этого. Джонс не делал этого.
Джонс. Браун не делал этого. Смит сделал это.
Смит. Я не делал этого. Браун сделал это15.
- Разбирается дело Брауна, Джонса и Смита. Один из них совершил преступление. В процессе расследования все они сделали по два заявления. Эти заявления написаны на доске (плакате). Было установлено далее, что один из них дважды солгал, другой дважды сказал правду, третий раз солгал, раз сказал правду. Кто совершил преступление?
На решение этой задачи потребуется не более 3 минут. Вовсе не обязательно, чтобы ее решили все. Важно другое - показать ребятам продуктивность метода исключения, а более всего - разрядить обстановку в классе после сосредоточенной работы. Можно смело сказать, что о решении примера, на который было затрачено 10 минут, ребята забудут к концу дня и не вспомнят о нем никогда. Логическую же задачу они унесут домой, над ней будет ломать голову вся семья, и она останется в памяти на долгие годы. Не исключено, что кому-то она поможет разобраться в сложной житейской обстановке.
Обычно подобные задачи переносят на внеклассную работу, на занятия факультативов по математике, особенно с ребятами, принимающими активное участие в математических олимпиадах. И это делается в абсолютном большинстве школ вовсе не потому что учителя не понимают роли и значения таких упражнений в развитии логического мышления. Просто на уроках катастрофически недостает времени даже на изучение программного материала. Стоит же только снять с учителя страх оказаться в отстающих, как он сам, без подсказок и инструкций, введет на свои уроки различные логические задачи. И не только задачи. На уроки придут ребусы, шарады, криптограммы, и никого уже не удивит, если учитель вдруг развернет перед ребятами лабиринт и предложит им помочь лыжнику выбраться из леса.
Вполне понятно, что решать эту задачу придется без карандаша и бумаги, а визуальное исследование вариантов движения требует цепкого внимания16. В этом без труда убедится каждый, кто попытается найти выход из леса без помощи карандаша.
Отыскивать выходы из лабиринтов - дело интересное, но не очень сложное. Значительно труднее, а стало быть, и полезнее составлять лабиринты самому. Увлекшись этим занятием, школьники очень скоро замечают одну особенность: самые замысловатые лабиринты значительно проще решаются обратным ходом. Поэтому нужно запутать следы и от входа к выходу и от выхода к входу. Хлопотное это тогда будет дело - найти выход.
Читать дальше