Вспомним сначала два урока в средней школе No 3, где директорствовал Сергей Сергеевич Шатунов. После объяснения, нового материала ребятам были даны образцы основных упражнений, и они получили право решать любую задачу из раздела "Бесконечные прогрессии". Итог, казалось бы, фанфарный: несколько человек решили все 27 упражнений из этого раздела. Может быть, именно так и следует поступать: предоставить ребятам право решать ежедневно столько, сколько они сами того пожелают? Капризная это штука - желание, а будучи помноженной на неизбежные сложности, сплошь и рядом подстерегающие искателей приключений, становится еще и опасной. Напомним: естественные процессы развиваются по линиям наименьшего сопротивления, а неизбежный дефицит рабочего времени и стремление быть "не хуже других" медленно, но верно уведут большую часть учащихся от работы по нарастающей сложности к более доступной или более привычной.
Третья четверть в экспериментальном IV классе 13-й донецкой школы. Ребята закончили программу V класса, и им предоставлено право решать примеры на все действия с обыкновенными, десятичными и периодическими дробями из конкурсных сборников для поступающих в высшие учебные заведения. Правда, такими книгами каждый учитель обеспечить всех своих учащихся не может, но большой беды в том нет: с помощью различных множительных машин, имеющихся в распоряжении различного рода кооперативов, можно без труда снять копии с нужных страниц, и ребята их вклеивают в свои альбомы. Увлечение примерами на грани ажиотажа. Малышам в диковинку выходить на правильные ответы и примеры головоломной сложности, устрашающие одним только внешним видом по сравнению с теми, которые им приходилось решать из учебников III-IV классов. Они вдруг начинают ощущать себя в каком-то новом качестве. И вот к очередному уроку один ученик решил сразу 5 таких примеров, другой 6, а Иришка Шепотько - 10! В общей сложности более 100 арифметических действий! Хорошо? Хуже некуда! Малышке кажется, что она чуть ли не подвиг совершила, а на деле - ушла от сложностей, переключилась на механические операции и пошла по линии наименьшего сопротивления. Еще и еще раз: естественные процессы развиваются по линиям наименьшего сопротивления. Точные пауки - это тысячи взаимопересекающихся направлений. Точки их пересечения должны быть надежно соединены, и надежность этих соединений целиком и полностью зависит от частоты, постоянства и строгости контроля. В противном случае мы получим прохудившуюся сеть отрывочных знаний с зияющими в ней прорехами. Не напоминает ли это порочную методику контрольных работ, описанную ранее? Взрослые, если внимательно присмотреться, во многом похожи на детей, а дети - это взрослые в миниатюре.
На перекрестках логических взаимосвязей
А теперь вернемся к листу учета решенных задач. Предположим, что для решения в классе учитель избрал задачу No 49 из числа задач для повторения. Это не первая задача, решаемая в классе из раздела "Давление", так как ранее были разобраны задачи из упражнения 18 на странице 66. Задача No 49 не самая простая и не самая сложная в разделе. Она представляет собой нечто похожее на островок, от которого можно отправиться в любую сторону. Именно такие задачи и должны в основном решаться на уроках, когда учащиеся еще только начинают делать первые шаги в новых разделах. Те из ребят, которые чувствуют в себе силы и уверенность, поплывут на глубину, другие -вдоль берега, а еще не окрепшие - к берегу, на мелководье. Но плыть-то все разно нужно! После того как задача решена, записана в тетрадь и кем-либо проверена, закрашиваются два квадратика - один в ведомости, а другой - в плашке. Плашка - уменьшенная копия индивидуальной ведомости. Справа и слева от этого квадратика пустующие клеточки - плыви в любую сторону. Слева - более легкие задачи, справа - более трудные. Здесь у сомневающихся могут возникнуть два вопроса.
1. Исключены ли случаи, когда ученики закрашивают свои квадратики, не решив задачу? Иными словами, нет ли здесь лазеек к нечестности?
2. Каким образом осуществляется контроль за строгостью ведения учета решенных задач в плашках и в ведомостях?
Начать, видимо, следует с того, что открытая форма учета предоставляет новые совершенно необычные возможности для подключения родителей к учебной деятельности ребят. Каждая решенная в тетради задача фиксируется цветным кружочком вокруг номера, записанного в начале решения. Кружок - сигнал для родителей. Новый рабочий день - новый цвет, и родителям видно, какие задачи были решены вчера, какие накануне, какие сегодня. Для работы в течение года вполне достаточно 3- 4 цветов. Тетрадь становится даже внешне очень привлекательной. Право обводить номера кружками предоставлено только учителю и ученикам-консультантам.
Читать дальше