1 ...6 7 8 10 11 12 ...111 Вне законов классической и квантовой теорий находитсяважнейшая теория человеческого бытия – теория информации.Она до сих пор пребывает вне взаимосвязи с взаимодействием между материей и энергией. В ортодоксальной науке под теорией информации понимают процессы обмена сведениямимежду людьми с помощью различных способов, между человеком и автоматическим устройством, между автоматическими устройствами, обмен сигналами в животном и растительном мире, передача признаков от клетки к клетке, от организма к организму (генетическая информация). Теорию информации рассматривают как теоретическую основу кибернетики. Исовсем не связывают с фундаментальными понятиями материи и энергии ни в рамках классической, ни в составе квантовой теории. Автор усматривает в этом главные издержки материалистического подхода в современной науке.
Если абстрагироваться от фундаментальных понятий, терминов и определений современной науки, то её основные концептуальные положения можно сформулировать следующим образом.
Весь окружающий нас мир (природа) материален, материя первична. Все объекты природы состоят из частиц разных веществ, а частицы (молекулы и атомы) состоят из микрочастиц (элементарных) атомов. Все частицы вещества обладают энергией и являются источниками различных физических полей. Взаимодействие частиц (материи) и энергии осуществляется через физические поля. На уровне микромира происходит взаимопревращение материи и энергии, частица микромира обладает одновременно и корпускулярными (фотон) и волновыми свойствами (квант энергии). Все свойства любых объектов природы обусловлены свойствами и энергетическим состоянием частиц. Однако однозначной взаимосвязи энергетического состояния материи (физических полей) и её свойств на уровне фундаментальных законов не установлено. Любой объект природы является саморазвивающейся и устойчивой системой в пространстве и времени, вмикромире устойчивое и непрерывное состояние частиц не подтверждается, а установлены скачкообразные квантовые переходы. Таковы основные положения концепции современной материалистической (ортодоксальной) науки.
На первый взгляд концепция современной науки вполне логична, понятна и образует завершенную систему базовых знаний и практических навыков человеческого бытия. Она вполне удовлетворяет потребности общества. Вопрос развития ортодоксальной науки – это углубление и расширение этих знаний и навыков в специальных теоретических и прикладных направлениях. Вместе с тем, многие проблемные вопросы так и не вышли из установленных канонических рамок ортодоксальной науки. Кним относятся вопросы искривления и многомерности пространства, сущность времени, первичности материи и энергии, природы физических полей. Досих пор не установлены закономерности возникновения и развития многих природных явлений и процессов,например, линейной и шаровой молнии, геомагнитных аномалий, природа электрического заряда и гравитации, многие явления и процессы возникновения, существования и развития Вселенной. И уж вовсе отрицаются такие явления, как неопознанные летающие объекты (НЛО), телепатия и телекинез, ясновидение, информационный обмен между объектами живой и неживой природы. Ортодоксальная наука отвергает гипотезу и религиозную догму о божественном сотворении мира и жизни после смерти. Иделает это, несмотря на то, что многие такие явления и процессы подтверждены статистически значимыми наблюдениями и даже зарегистрированы доступными в настоящее время средствами.
Отчасти такую обструкционистскую позицию ортодоксальной науки можно объяснить тем, что все исходные гипотезы и модели соответствующих теорий были и остаются в жёсткой зависимости от имеющихся технических средств регистрации и измерения всех видов наблюдаемых явлений и процессов.Большинство современных средств измерений работает в условиях медленно развивающихся процессов. Поэтому многие константы в законах классической теории таковыми не являются,хотя эти законы считаются фундаментальными и вполне пригодными для практических потребностей и инженерных решений. Например, свойства веществ и материалов определяются путем многократных прямых или косвенных измерений с использованием метрологически аттестованных методик выполнения измерений, стандартизованных образцов и средств измерений в статических или квазистатических условиях нагружения образцов при одномерных, реже двумерных, схемах нагружения. Физические свойства измеренных свойств данного вещества заносятся во все виды справочных каталогов и в техническую документацию (как нормативы) на производство веществ, материалов и изделий из них. Они рассматриваются как константы и используются в проектно-конструкторской документации и при контроле качества продукции. Между тем, если изменить тип образца или тип средств измерений, а тем более изменить (повысить) темп (скорость) нагружения образца, то получим различные величины измеренных свойств, иногда отличающихся на порядок и более в сравнении со справочными данными. В данном случае можно утверждать, что в большинстве законов классической теории следует использовать не установленные (экспериментально) константы, а переменные величины.При этом эти законы должны подлежать корректированию. Аналогичная ситуация с константами законов и в квантовой теории.Не менее значимой причиной относительного несовершенства современной ортодоксальной науки является выбор исходных гипотездля объяснения и описания различных явлений и процессов и создания на их основе соответствующих теорий.Разработка физических и математических моделей сложных явлений и процессов осуществляется при использовании большого количества допущений и ограничений, упрощений и предположений. Многомерные процессы при этом сводятся в основном к одномерным, реже к двумерным и крайне редко к трехмерным моделям. При этом используется, как правило, допущение о независимомвлиянии множества факторов на исход процесса. В реальности независимых процессов в любых явлениях не существует, тем более одномерных процессов. А ведь именно такие модели и законы преобладают в классической теории.
Читать дальше
Конец ознакомительного отрывка
Купить книгу