В многошаровой трубе, когда шары находятся на достаточно большом удалении друг от друга, на сжатие последующего шара оказывает влияние главным образом предыдущий, при их сближении начинает чувствоваться влияние всё большего количества шаров. И нарастает устойчивость, так как энергии шаров перемешиваются, — но тогда труднее обеспечить сферическую симметрию сжатия от отдельного шара. Непрерывная „труба“, по-видимому, обладает наибольшей устойчивостью, но меньшим сжатием.
Устойчиво детонирующая система полностью решает энергетический баланс, её можно использовать для выгодного производства энергии. По нашим оценкам, необходимая инициирующая энергия составляет несколько мегаджоулей. В роли внешнего устройства, возбуждающего термоядерную реакцию, несомненное лидерство имеют лазеры, как наиболее технически освоенные. Но, как сказано, нужен запас. Наличие же запаса выше некоторого минимального, обусловленного всякого рода неточностями (допусками) , может быть использовано для возникновения совсем экзотических построений.
Доступными тогда становятся не только цилиндрические конструкции, но также конусообразные — расширители. Угол раствора конуса пропорционален запасу. Но каков бы ни был запас, рано или поздно энерговыделение удвоится и станет возможным повести энергию не по одному, а по двум каналам. Так возникает произвольная энерговыделяющая сеть двухмерной или даже трёхмерной конфигурации.
Ныне истинное состояние таково: детонация реализована в крупном взрывном эксперименте. Что же касается мини-шнуров, пригодных для непосредственного использования на электростанциях, то здесь до практических результатов дело ещё не дошло. На этом направлении уже многие годы мы пребываем в состоянии „глубоких научно-исследовательских разработок“.
* * *
Гибридный реактор. Подразумевается такой подкритический реактор, в котором стационарность энерговыделения поддерживается с помощью постороннего источника нейтронов.
В качестве такого источника нейтронов может использоваться ускоритель частиц, возбуждающих ядерные реакции, или лазер, концентрирующий свои лучи на миллиметровую мишень и вызывающий термоядерные реакции на тяжёлых изотопах водорода. С оговорками к гибридному реактору можно отнести и комбинированный делительный. В нём соединены внутренний быстрый критический реактор малой мощности, который своими нейтронами подпитывает энергетический внешний подкритический бланкет.
Подкритические активные зоны, при достаточно глубокой подкритичности, не допускают при всех непредвиденных обстоятельствах перехода через верхнее критсостояние, в них невозможно развитие неконтролируемой цепной реакции. Переход к подкритическим реакторам, что очень важно, передвигает границу, разделяющую знание от незнания, в область изученную. Идёт поиск компромисса: чем меньше подкритичность, тем меньше требование к мощности источника, но тем меньше зазор, отделяющий от опасной зоны. И наоборот.
По расчёту, по опыту, в том числе зафиксированному в инструкциях по технике безопасности, реактор можно считать надёжно защищённым от случайностей с выбросом в надкритичность, если глубина подкритичности около 5 процентов.
Наконец, наличие внешнего источника, допинга нейтронов, улучшает нейтронный баланс и ведёт к более сильному выгоранию урана: экономия по отношению к затраченному природному урану может составлять разы по сравнению со стандартными реакторами ВВЭР и РБМК.
Из всех термоядерных и ускорительных источников нейтронов мы отдаём предпочтение импульсивно-периодическому источнику на основе лазерного термоядерного синтеза (ЛТС) . Причина предпочтения заключается, помимо прочего, в компоновочно-конструктивном оформлении. Только для ЛТС мишенная камера — зона термоядерного горения — отделена от энергопитания (собственно лазеров) на десятки метров. Сама по себе камера сгорания с соответствующими каналами для излучения лазера (лучше всего с одним каналом — односторонней подсветкой) компактна и достаточно просто размещается в активной зоне реактора. Вообразить подобное для „Токамака“ или ускорителя практически невозможно.
В гибридной схеме основная энергия — делительная. Отношение делительной энергии к термоядерной первичного источника может составлять несколько тысяч раз при приемлемом уровне подкритичности в двухкамерной конструкции, использующей идею односторонних нейтронных потоков. Внутренний, „быстрый“ каскад питает нейтронами наружный, „тепловой“, тогда как влияние тепловых нейтронов на внутреннюю часть подавлено в сотни раз.
Читать дальше