Но определение оптимальности может иметь теоретический интерес, даже несмотря на невозможность его физической реализации. Он представляет собой стандарт, с которым можно соотносить эвристические аппроксимации и который иногда позволяет нам судить, как именно поступил бы оптимальный агент в той или иной ситуации. С некоторыми альтернативными определениями оптимальности мы еще встретимся в двенадцатой главе.
Одно из преимуществ связи задачи обучения в определенных областях с общей задачей байесовского вывода состоит в том, что эти новые алгоритмы, делающие байесовский вывод более эффективным, немедленно приводят к прогрессу во множестве различных областей. Например, метод Монте-Карло непосредственно применяется в машинном зрении, робототехнике и вычислительной генетике. Еще одно преимущество заключается в том, что исследователям, работающим в различных областях, стало проще объединять результаты своих изысканий. Графовые модели и байесовские статистики представляют собой общий фокус исследований в таких областях, как машинное обучение, статистическая физика, биоинформатика, комбинаторная оптимизация и теория коммуникации [41] См.: [Wainwright, Jordan 2008]. У байесовских сетей бесчисленное количество областей применения; см., например: [Pourret et al. 2008].
. Заметный прогресс в машинном обучении стал следствием использования формальных результатов, изначально полученных в других областях науки. (Конечно, машинное обучение значительно выиграло от появления более быстрых компьютеров и доступности больших наборов данных.)
Во многих областях деятельности уровень искусственного интеллекта уже превосходит уровень человеческого. Появились системы, способные не только вести логические игры, но и одерживать победы над людьми. Приведенная в табл. 1 информация об отдельных игровых программах демонстрирует, как разнообразные виды ИИ побеждают чемпионов многих турниров [42] Возможно, некоторые читатели, сочтя это направление не слишком серьезным, зададут вопрос: зачем уделять столь пристальное внимание компьютерным играм? Дело в том, что игровые интеллектуальные системы, пожалуй, дают самое наглядное представление о сравнительных возможностях человека и машины.
.
Таблица 1.Игровые программы с искусственным интеллектом
Шашки. Уровень интеллекта выше человеческого.
Компьютерная игра в шашки, написанная в 1952 году Артуром Самуэлем и усовершенствованная им в 1955 году (версия включала модуль машинного обучения), стала первой интеллектуальной программой, которая в будущем научится играть лучше своего создателя [43] См.: [Samuel 1959; Schaeffer 1997, ch. 6].
. Программа «Чинук» (CHINOOK), созданная в 1989 году группой Джонатана Шеффера, сумела в 1994 году обыграть действующего чемпиона мира — первый случай, когда машина стала победителем в официальном чемпионате мира. Те же разработчики, использовав алгоритм поиска «альфа-бета отсечение» в базе данных для 39 трлн эндшпилей, представили в 2002 году оптимальную версию игры в шашки — это программа, всегда выбирающая лучший из ходов. Правильные ходы обеих сторон приводят к ничьей [44] См.: [Schaeffer et al. 2007].
Нарды. Уровень интеллекта выше человеческого.
Компьютерная игра в нарды, созданная в 1970 году Хансом Берлинером и названная им BKG, в 1979 году стала первой интеллектуальной программой, обыгравшей чемпиона мира в показательном матче — хотя впоследствии сам Берлинер приписывал эту победу удачно брошенным костям [45] См.: [Berliner 1980 a; Berliner 1980 b].
.
Созданная в 1991 году Джералдом Тезауро программа TD-Gammon уже в 1992 году достигла такого уровня мастерства, что могла сразиться на чемпионате мира. Ради самосовершенствования программа постоянно играла сама с собой, причем Тезауро использовал такую форму укрепляющего обучения, как метод временных различий [46] См.: [Tesauro 1995].
.
С тех пор программы для игры в нарды по своему уровню в значительной степени превосходили лучших игроков мира [47] В частности, такие программы по игре в нарды, как GNU [Silver 2006] и Snowie [Gammoned.net, 2012].
«Эвриско» в космической битве Traveller TCS. Уровень интеллекта выше человеческого в сотрудничестве с самим человеком [48] Процессом создания космического флота и битвами руководил сам Дуглас Ленат, написавший по этому поводу: «Итак, победа стала заслугой и Лената, и Eurisco — в пропорции 60 : 40. Основной момент тем не менее состоит в том, что в одиночку ни я, ни программа никогда не справились бы» [Lenat 1983, p. 80].
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу