Газета Троицкий Вариант - Газета Троицкий Вариант # 48

Здесь есть возможность читать онлайн «Газета Троицкий Вариант - Газета Троицкий Вариант # 48» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Публицистика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Газета Троицкий Вариант # 48: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Газета Троицкий Вариант # 48»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Газета Троицкий Вариант # 48 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Газета Троицкий Вариант # 48», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Д.И.:А какая математика занимается солитонами?

В.З.:Это теория интегрируемых систем [6], такая и старая, и новая теория. Почему, собственно, это открытие стало таким важным для математики? Среди динамических систем есть интегрируемые системы, которые можно проинтегрировать в квадратурах, как говорили раньше, движение которых можно полностью описать аналитически. Предположим, не всегда в элементарных, обычно нужны эллиптические или гиперэллиптические функции. До 1960-х годов было известно очень мало примеров интегрируемых систем.

Д.И.:В бытовом смысле это можно понимать так: системы, которые изолированы по отношению.

В.З.:Нет-нет, это особые системы. Система может быть изолирована, пожалуйста, но это особый класс динамических систем. Ими обладает такая избранная аристократия динамических систем с дополнительными инвариантами, у которых группы внутренней симметрии существенно выше, чем у других. До сих пор, начиная с XIX в., было известно довольно мало интегрируемых систем. Ну, вот движение твёрдого тела: если мы бросим ложку и будем описывать, как она движется, движение описывается эллиптическими функциями. Это интегрируемая система. Есть симметричный волчок, закреплённый в одной точке — интегрируемая система. Движение частицы в центрально-симметричном поле; движение частицы в поле двух кулоновских центров. Скажем, есть две звезды, и между ними движется третье тело — интегрируемая система. Каждая интегрируемая система является базисом для целой огромной науки, потому что реальные системы часто близки к интегрируемым, но не интегрируемы.

Б.Д.:Они не настолько сильно связаны внутри себя.

В.З.:Да, они не настолько глубоко симметричны, они приближенно симметричны. И вот по теории возмущения к интегрируемым системам и строилась вся наука вплоть до 1971 г., когда было обнаружено (наша работа с академиком Л.Д. Фаддеевым), что существуют интегрируемые системы с бесконечным числом степеней свободы, сильно нелинейные, так называемые уравнения Кортевега де Фриза. И потом их пошли открывать: то, что описывает движение соли-тонов в оптических волокнах, — это так называемое нелинейное уравнение Шредингера. Оно тоже интегрируемое, и это было найдено в моей (совместной с А.Б. Шабатом) работе. Она является одной из двух, наиболее цитируемых работ российских учёных, которые Вы можете найти на сайте Scientific.ru, — на неё, по-моему, около 3 тыс. ссылок.

Б.Д.:В чём специфика тех объектов, которые были постулированы в 1971 г.? Увеличение количества степеней свободы в чём отражается?

В.З.:Смотрите, у этой ложки шесть степеней свободы. Вы можете в трёх направлениях двигать и в трёх направлениях вращать. Если вы перейдёте в систему центра масс, которые падают свободно, то там останется три степени. А солитон — это теория мелкой воды в море. Это, разумеется, система с бесконечным числом степеней свободы, т.е. можно разнообразно эту воду возмущать. Тем не менее, это интегрируемая система: вы можете аналитически описать любое возмущение — что будет происходить до самого конца.

Б.Д.:То есть это возможность рассмотреть как интегрируемую систему гораздо более разнообразные классы.

В.З.:Гораздо более разнообразные! Оказалось, что их гораздо больше, чем предполагалось, и открытие новых интегрируемых систем — это был такой бум 1970-х годов. К концу 70-х — середине 80-х всё, что можно, было выработано и найдено. Например, мы открыли, что интегрируемы уравнения Эйнштейна в частных, но важных случаях, описывающих «чёрные дыры» [5]. «Чёрные дыры», с математической точки зрения, оказались теми же солитонами.

Д.И.:Всё есть солитон.

А.К.:Нет, всё есть поэзия, на самом деле. Потому что, как Владимир Евгеньевич описывал, не помню уже что: это же аристократия этих структур!

Б.Д.:Собственно, интегрируемые системы.

В.З.:Мне бы хотелось вам рассказать о том, чем я занимаюсь последнее время. Я крайне увлечён проблемой так называемых волн-убийц. Это действительно достаточно загадочное явление и с точки зрения физики, и с точки зрения математики. Оно сейчас привлекает большой интерес ученых, это одна из горячих точек развития науки, и мы с моими учениками непрерывно им занимаемся.

Иногда в океане бесследно пропадают суда. Раньше моряки рассказывали такие истории: «Плыву я по относительно спокойному морю. Есть волны, но не очень большие. Вдруг возникает огромная волна, высотой метров в 20, и идет на меня. Через минуту она — раз! — ударяется о моё судно. Я не успеваю ничего сделать: ни изменить курс, ни дать сигнал SOS. Всё, судно утонуло, дай бог, как-нибудь удастся выбраться». Морякам не верили, считали, что это морские байки. Но существует компания Ллойда, которая фиксирует места гибели кораблей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Газета Троицкий Вариант # 48»

Представляем Вашему вниманию похожие книги на «Газета Троицкий Вариант # 48» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Газета День Литературы
libcat.ru: книга без обложки
Газета День Литературы
libcat.ru: книга без обложки
Газета День Литературы
libcat.ru: книга без обложки
Газета День Литературы
libcat.ru: книга без обложки
Газета День Литературы
Газета День Литературы - Газета День Литературы # 111 (2005 11)
Газета День Литературы
libcat.ru: книга без обложки
Газета День Литературы
libcat.ru: книга без обложки
Газета Газета Литературка
Газета Газета Литературка - Литературная Газета 6249 ( № 44 2009)
Газета Газета Литературка
Газета Газета Литературка - Литературная Газета 6247 ( № 43 2009)
Газета Газета Литературка
libcat.ru: книга без обложки
Газета Газета Литературка
Отзывы о книге «Газета Троицкий Вариант # 48»

Обсуждение, отзывы о книге «Газета Троицкий Вариант # 48» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x