Решение проблемы ученые видят в использовании оптических систем передачи данных. В упрощенном виде такая система будет состоять из модулятора, отвечающего за преобразование электрических импульсов в световые, линий связи и декодирующего устройства, необходимого для формирования электрических сигналов на основе световых импульсов. Все три компонента, в принципе, уже существуют.
Однако в многоядерной системе с оптическими внутричиповыми соединениями необходим и еще один компонент - крошечный "коммутатор", который будет регулировать движение потоков данных между ядрами. Именно такой переключатель и создан в IBM. В статье, опубликованной в журнале Nature Photonics, подчеркивается, что нанофотонный переключатель соответствует ряду критических требований. Во-первых, он компактен - на два порядка меньше сечения волоса, а во-вторых, способен обрабатывать данные со скоростью до 40 Гбит/с. При использовании же световых волн с различными длинами этот показатель и вовсе может достичь 1 Тбит/с! И наконец, в-третьих, нанофотонный коммутатор доказал свою работоспособность в реальных условиях.
По сравнению с медными оптические внутричиповые линии связи теоретически позволят добиться стократного увеличения пропускной способности при десятикратном снижении потребляемой энергии. И хотя все ключевые элементы таких систем, в общем-то, уже разработаны, увидеть массовые процессоры с оптическими коммутирующими линиями можно будет в лучшем случае в следующем десятилетии. ВГ
Нано не бьется
Удивительные результаты получили ученые из Национального института стандартов (США) и Мэрилендского университета, исследовавшие механические свойства наночастиц с помощью атомно-силового микроскопа и компьютерного моделирования. Оказывается, на наномасштабах даже хрупкие материалы вроде кварца могут стать пластичными, как золото.
На привычных масштабах предел разрушения материала зависит от его способности сохранять свою форму под нагрузкой. Атомы пластичных веществ перемещаются на большие расстояния, сохраняя связи между собой, тогда как в хрупких материалах быстро возникают дефекты, из которых под нагрузкой развиваются трещины.
На наномасштабах структурные дефекты отсутствуют, и все материалы практически "идеальны", что существенно повышает их прочность. Кроме того, из-за малых размеров нанообъектов большинство их атомов находится на поверхности, где они слабее связаны с остальными атомами и поэтому более подвижны. Это превращает даже хрупкие материалы в пластичные, и их новые свойства начинают явно противоречить здравому смыслу. Исследователи считают, что термины "хрупкий" или "пластичный" на наномасштабах уже неприменимы.
С помощью атомно-силового микроскопа ученые наблюдали, как идет процесс разрушения в микромире. Они с удивлением обнаружили, что наночастицы хрупкого кварца растягиваются почти так же сильно, как серебряные или золотые, и продолжают деформироваться даже тогда, когда давно должны были бы сломаться.
Однако компьютерные расчеты, в основу которых был положен метод молекулярной динамики, подтвердили эти наблюдения. Подвижность атомов на поверхности наночастиц увеличивает их пластичность независимо от того, кристаллическим или аморфным является материал. Причем чем меньше наночастицы, тем больше увеличивается их податливость и прочность на разрыв, а у кристаллов это увеличение выражено еще сильнее.
Пока ученые только в самом начале пути, и новую теорию и базу данных по механическим свойствам различных наночастиц еще предстоит создать. Эти сведения окажут неоценимую помощь проектировщикам электронных и микромеханических наноустройств будущего. ГА
Кислота на игле
Ученым из Колумбийского университета и Калифорнийского технологического института впервые удалось надежно измерить электропроводность молекулы ДНК. Эксперименты объяснили многолетние неудачи коллег и выявили серьезные проблемы, с которыми могут столкнуться конструкторы молекулярных вычислительных устройств, основанных на ДНК.
С тех пор как более полувека назад удалось определить структуру и функции двойной спирали ДНК, много усилий было затрачено на изучение электронных свойств этой жизненно важной кислоты. Но все попытки как-то измерить хотя бы электрическую проводимость гигантской молекулы до сих пор давали только противоречивые, плохо согласующиеся результаты. Молекула вела себя то как хорошо проводящий металл, то как изолятор, а порой и как полупроводник. При низких температурах ДНК иногда демонстрировала даже сверхпроводящие свойства.
Читать дальше