Рисунок 4 показывает обмотку С С в еще более сдвинутом положении, когда якорь завершил оборот на три восьмых. В этот момент обмотка С всё гще вырабатывает ток того же направления, как и прежде, но слабее, в то же время образуя сравнительно слабые полюсы ns (на рисунке 4а). Ток в обмотке С той же силы, но обратного направления. Результат этого, следовательно, в образовании на кольце полюсов п 1 и s 1 как показано на рисунке, и полярности NS, причем полюсы теперь сдвинуты на три восьмых по отношению к окружности кольца.
На рисунке 5 показано, что якорь завершил оборот наполовину, а результирующее магнитное состояние кольца показано на рисунке 5а. Теперь ток в обмотке С равен нулю, в то время как обмотка С 1вырабатывает наиболее сильный ток того же направления, что и прежде; намагничивание сейчас производят витки с 1с 1 и только они, как показано на рисунке 5а, причем следует помнить, что полюсы NS сдвинуты по отношению к окружности кольца наполовину. Во время второй половины оборота все действия повторяются, как показано на рисунках с 6 по 8а.
Рисунки помогают понять, что во время одного оборота якоря генератора полюсы кольца один раз оборачиваются по окружности и каждый оборот производит одинаковый результат, при этом полюсы вращаются очень быстро, находясь в согласии с вращением якоря. Если реверсировать подключение одной из обмоток, то направление вращения полюсов изменится на противоположное направление, но действия при этом будут совершаться те же. Вместо того чтобы использовать четыре провода, с тем же успехом можно использовать три, причем один будет обратным для обоих контуров.
Это перемещение, или вращение полюсов, проявляется в ряде любопытных явлений. Если стальной диск или диск, изготовленный из любого другого магнитного металла, аккуратно насаженный на какую-либо ось, поднести к кольцу, он начинает быстро вращаться, причем направление вращения изменяется в зависимости от положения диска. Например, снаружи и изнутри кольца он движется в противоположных направлениях, оставаясь в покое в положении, симметричном кольцу. Это легко объяснить. Каждый раз при приближении полюса, этот полюс индуцирует на ближайшей точке диска противоположный полюс и возникает притяжение; благодаря этому полюс сдвигается далее и возникает тангенциальное притяжение. Действие повторяется
Рис. 9
вновь и вновь, в результате чего имеем более или менее быстрое вращение диска. Поскольку сила притяжения действует на ту часть диска, которая ближе всего к кольцу, то вращение внутрь и наружу, то есть вправо и влево происходит в разных направлениях, как показано на рисунке 9. Если диск помещен симметрично кольцу, то сила притяжения по обеим сторонам его одинакова, и вращения не происходит.
Это действие основано на магнитной инерции железа; по этой причине большему влиянию подвержен диск из твердой стали, нежели диск из мягкого железа. Последний способен изменять магнитные поля. Такой диск оказался очень полезным инструментом в проводимых исследованиях, так как позволял мне заметить все особенности происходящих событий. Любопытное воздействие также испытывают на себе железные опилки. Если насыпать немного опилок на бумагу и поднести к внешней стороне кольца поближе, то можно заметить, что они начинают колебаться, оставаясь в то же время на месте, даже если лист бумаги двигать взад и вперед; но если поднять лист на определенную высоту, которая зависит от интенсивности полюсов и скорости вращения, опилки разлетаются в стороны в направлении, обратном предполагаемому вращению полюсов. Если лист бумаги с опилками положить плашмя на кольцо и внезапно подать ток, можно легко пронаблюдать существование магнитных вихрей.
Для того чтобы продемонстрировать полное сходство между кольцом и вращающимся магнитом, сильный электромагнит механически вращали, при этом наблюдались все явления, идентичные описанным выше.
Читать дальше
Конец ознакомительного отрывка
Купить книгу