Мгновение истины
Одним из недостатков современных компьютеров с их навороченными операционными системами является длительное время загрузки даже на мощном процессоре. Порой это сильно раздражает, если ПК нужно включить всего на пару минут - например, для проверки почты или отправки нескольких IM-сообщений. Впрочем, благодаря новой системе Hyper-Space компании Phoenix Technologies эта проблема скоро может уйти в прошлое.
Известный разработчик базовых систем ввода/вывода (BIOS) предлагает запускать определенные приложения, не загружая операционную систему. Суть новой технологии сводится к внедрению в BIOS фирменного гипервизора HyperCore, позволяющего "большой" ОС и "мини-системе" с неким набором установленных приложений функционировать независимо друг от друга - читай, в виртуальных машинах.
Преимуществ у технологии HyperSpace несколько. Во-первых, благодаря тому, что загружать операционную систему со всеми ее драйверами и библиотеками становится необязательно, то получить доступ к определенным программам владелец ПК сможет практически сразу после нажатия на кнопку включения питания. Во-вторых, для лучшей защиты компьютеров от сетевых угроз производители смогут встраивать дополнительные средства безопасности, которые, работая вне операционной системы, сумеют без проблем обнаруживать вредоносные программы и руткиты. В-третьих, в случае с ноутбуками платформа HyperSpace позволит добиться более длительного времени автономной работы, поскольку мощности компьютера не будут тратиться на поддержку ненужных в данный момент ресурсов - например, отображение финтифлюшек интерфейса Windows Vista. Наконец, в-четвертых, пользователи смогут параллельно работать и с основной программной платформой, и с приложениями HyperSpace (риск внезапного "падения" которых, очевидно, должен быть намного меньше), быстро переключаясь между виртуальными машинами.
Что касается программ HyperSpace, то они должны предустанавливаться производителем ПК (а не пользователем), и конкретный набор доступных с их помощью функций также будет определять вендор. Вероятно, самыми востребованными окажутся медиаплееры, клиенты электронной почты, интернет-мессенджеры и т. п. - правда, все эти приложения для HyperSpace еще только предстоит создать.
Phoenix подчеркивает, что технология оптимизирована для работы с платформами Intel vPro и Intel Centrino Pro. В настоящее время компания ведет переговоры с изготовителями комплектного оборудования и сервис-провайдерами с целью продвижения новинки. Ожидать появления первых устройств с поддержкой HyperSpace можно во второй половине следующего года.
В принципе, Phoenix Америки не открыла: подобные решения предлагались и раньше, но распространения пока не получили. Возможно, на сей раз известному поставщику BIOS удастся преодолеть инерцию рынка. ВГ
Углядеть за электроном
Новый метод для исследования электронов в твердых телах впервые реализовала команда европейских ученых, координируемых из Института квантовой оптики в Гарчинге, Германия. Метод позволяет проследить за движением электронов с разрешением несколько десятков аттосекунд (10–18 с) и станет незаменимым помощником при разработке новых полупроводниковых устройств, молекулярной электроники, оптоэлектроники и других перспективных информационных технологий.
Основная идея нового метода фотоэмиссионной спектроскопии известна уже более ста лет. Когда фотон с достаточно большой энергией выбивает электрон из материала, то, измерив оставшуюся у электрона энергию и время его подлета, в принципе, можно судить о том, с кем и как электрон был связан в материале и как двигался. Но в полной мере этот метод заработал только сегодня. Дело в том, что легкие электроны движутся очень быстро, и для того, чтобы "облететь" вокруг ядра электрону, например, в атоме водорода достаточно всего 150 аттосекунд. И это характерное время электронных процессов и во всех других материалах. Сами же относительно тяжелые ядра атомов могут перемещаться с характерным временем порядка фемтосекунд (10–15 с) и на фоне электронов выглядят почти неподвижными. И если фемтосекундное временное разрешение, достаточное для того, чтобы проследить за протеканием химических реакций, удалось получить еще в девяностых годах, то новый временной рубеж до сих пор могли преодолевать только при работе с газами.
Чтобы достичь аттосекундного разрешения в эксперименте, ученые использовали мощный фемтосекундный импульс инфракрасного (750 нм) лазера. Импульс сфокусировали на трубочку с неоном, в котором в результате нелинейных процессов образовался короткий (около 100 аттосекунд) импульс вакуумного ультрафиолета с энергией фотонов около 90 электрон-вольт. Ослабив остатки инфракрасного излучения циркониевой фольгой, оба импульса сфокусировали на образец из вольфрама, причем время прихода инфракрасного импульса можно было менять, смещая зеркало. Выбитые из вольфрама электроны, после взаимодействия с полем инфракрасного импульса, которое слегка изменяло их энергию, попадали в спектрометр, измерявший энергию и время подлета электронов. После нескольких выстрелов с различной задержкой инфракрасного импульса электронные спектры уже содержали достаточно информации, чтобы точно определить время прилета электронов и выяснить, откуда был выбит тот или иной электрон - из зоны проводимости материала или из валентной зоны, из поверхностных состояний или из глубины материала, и как он там до импульса двигался.
Читать дальше