Но если по Крылову, то удивляться тут нечему, потому что «естественно ему было обстоятельно изучать Ньютоново учение о сопротивлении жидкостей, а значит, и его «Начала» вообще». Вот так!
То, что называется научным непревзойденным подвигом, для Крылова, — «естественно», не более.
«В этом умении, — констатировал Редакционный совет АН СССР, — сочетать различные темы, казалось бы, совершенно не связанные между собой, и притом сочетать так, чтобы, получилась наибольшая польза для науки и ее применения, — одно из проявлений великой мудрости А.Н.».
А мудрец, истинно по-крыловски соблюдая непревзойденный стиль Аксакова и гротеск Гоголя, по-молодому озорно поблескивая глазами, обращаясь к своим восприемникам, адъюнктам Морской академии, начинал лекцию по математике:
— В старые годы в офицерских классах Морского корпуса математику читал академик Михаил Васильевич Остроградскиц (скончался 1 января 1861 года). Он говаривал своим слушателям: «Математику на 12 баллов знает один господь бог, я ее знаю на 10 баллов, а вы все на нуль».
Мы не последуем за великим ученым, всеведующему богу математика не нужна, и по Остроградскому я ее также знаю на нуль, но я 45 лет занимаюсь разными вопросами техники морского дела, требующими приложения математики. За эти 45 лет некоторые отделы математики и теоретической механики приходилось прилагать чуть ли не ежедневно, другие — раз в месяц, третьи — раз в год, и, наконец, были и такие, которые мне понадобились один раз в 45 лет.
Представьте себе, я стал бы читать все эти отделы, и вот вам что-нибудь из этих отделов понадобилось через 37 лет; поверьте, что вы к тому времени так это забудете, что вам придется это как бы вновь выучить, прежде чем прилагать. Надо вам показать, как это делать.
Хотя вы и готовитесь быть профессорами в нашей академии, но вы и теперь и в будущем будете работать над практическим делом, которое всегда будет требовать не столько общих рассуждений, а конкретного ответа; значит, прежде всего надо уметь производить численные вычисления быстро и верно.
Численные вычисления вам понадобятся каждый день, поэтому методы их производства и должны быть усвоены в первую голову.
В общем курсе вы изучали ряды и их общие свойства, но вы не имели практики в применении их к вычислениям с точки зрения быстрого и верного, с требуемой степенью точности получения результата.
Вы мне не поверите, что в точнейшей из наблюдательных наук — астрономии нет ни единой точной формулы; всегда пользуются приближенными формулами и получают результат с требуемой степенью точности не только быстрее, но, если можно так выразиться, «вернее», нежели по точной формуле. Вот этим и придется пополнить то, что вы знаете о рядах; в практике с этим вы будете встречаться раз в неделю. Вам часто придется пользоваться интегральным исчислением и притом обеими его частями, то есть интегрированием функций и интегрированием дифференциальных уравнений, но опять с иной точки зрения, нежели преподано в общем курсе.
Вы видели, сколь ограничено число классов тех функций, интегралы от которых выражаются в конечном виде. В практике вы этих функций почти не будете встречать; опрашивается, как же быть? Еще меньше классов дифференциальных уравнений, интегрируемых в конечном виде; несколько больше таких, которые интегрируются в квадратурах; как же быть во множестве тех случаев, когда уравнение ни к одному из этих классов не подходит?
В «теории лафетов» геперала Джакоба вы найдете такое место: составил дифференциальное уравнение, определяющее нужную ему неизвестную, и пишет: «интегрируй, кто может». Надо будет вам показать, как интегрировать с требуемой степенью точности любое обыкновенное дифференциальное уравнение, это вам будет встречаться, по крайней мере, раз в месяц, а то и чаще.
Раз в год будут вам встречаться обыкновенные дифференциальные уравнения, в которых требуется удовлетворить не только заданным начальным, но и заданным граничным условиям; мы постараемся пояснить и этот вопрос.
Совершенно подобный же характер постараемся придать и курсу теоретической механики».
И не случайно в самой атмосфере академии звучало в такое время предупреждение:
— Тише! Крылов математику читает…
Но вот наступило время, в котором, выражаясь языком любимого академиком писателя Н.С. Лескова, довелось благоудивляться самому Крылову.
Сияющий строгим великолепием Зал революции Высшего военно-морского училища имени М.В. Фрунзе — петровское гнездо русских моряков, выпустившее в великое жизненное плавание мичмана Алексея Крылова, — огласили серебряные звуки фанфар. В зале присутствуют две тысячи человек, при звуках фанфар все в едином порыве встают. С развернутыми знаменами для приветствия «Адмирала от теории корабля» входят две роты курсантов, фрунзенцев и дзержинцев.
Читать дальше