Именно в этот момент на научной сцене появился Эйнштейн.
Теории Эйнштейна возникли не на пустом месте, они были подготовлены открытиями череды ученых, начиная с Галилея и Ньютона и заканчивая Лоренцем и Пуанкаре.
«Если смотреть на развитие теории относительности ретроспективно, – говорил Эйнштейн, – то в 1905 году она готова была к тому, чтобы ее открыли». Он был уверен, что уравнения Максвелла идеальны, то, что они разрушаются при смене системы отсчета, казалось ему ошибкой. Для того чтобы ее обнаружить и устранить, он сосредоточился на главном, как он считал, факторе электромагнитных явлений – относительном движении. Свою статью «К электродинамике движущихся тел» Эйнштейн начал такими словами: «Известно, что электродинамика Максвелла в современном ее виде приводит в применении к движущимся телам к асимметрии, которая несвойственна, по-видимому, самим явлениям. Вспомним, например, электродинамическое взаимодействие между магнитом и проводником с током. Наблюдаемое явление зависит здесь только от относительного движения проводника и магнита, в то время как, согласно обычному представлению, два случая, в которых движется либо одно, либо другое из этих тел, должны быть строго разграничены».
Все заключения, высказанные в революционной статье Эйнштейна, основывались на двух постулатах: законы физики принимают один и тот же вид во всех системах отсчета, где движение является равномерным; скорость света в вакууме одна и та же для любой инерциальной системы отсчета. В первом постулате не было ничего нового, он использовался и в механике Ньютона, правда, Ньютон применял его к механическим явлениям, а Эйнштейн распространил абсолютно на все физические явления.
Но второй постулат был совершенно революционным. Макс Планк писал по этому поводу: «Теория относительности приписывает абсолютный смысл такой величине, которая в классической физике обладает лишь относительным характером, – скорости света». Преобразования Лоренца являлись прямым следствием этого постулата. Второй постулат Эйнштейна противоречил принципам классической механики, созданной Ньютоном: там использовался закон сложения скоростей. Но скорость света постоянна всегда, независимо от скорости источника, который излучает свет. Законы Ньютона на нее не распространяются.
Эйнштейн вывел постоянство скорости света путем математических расчетов, из формул Максвелла. Сочетание этой константы с принципом относительности давало совершенно новое представление о многих понятиях и законах физики.
Одним из важнейших и интереснейших выводов, следующих из постоянства скорости света, стало изменение понятия одновременности.
Если две инерциальные системы отсчета движутся относительно друг друга, то два события, происходящие одновременно в одной из систем отсчета, могут не быть одновременными в другой. Для того чтобы проиллюстрировать это положение, вернемся к примеру с кораблем и наблюдателем на причале, к которому прибегал Галилей.
Итак, первый наблюдатель находится на причале, второй – в трюме движущегося корабля. Если второй наблюдатель встанет в центр трюма и одновременно бросит в две стены, расположенные напротив друг друга, мячики, то они достигнут стен одновременно. (Представим, что скорость у этих мячей одинаковая.) Если при этом корабль движется слева направо, то для наблюдателя, стоящего на причале, эти события будут выглядеть так: мячу, летящему вправо, нужно преодолеть большее расстояние, при этом его скорость становится больше за счет сложения со скоростью корабля. Расстояние, которое нужно пролететь левому мячу, сокращается за счет движения корабля, но и скорость тоже уменьшается, так как из нее нужно вычесть скорость движения судна. Таким образом, мячи все равно ударятся о стены одновременно И для первого, и для второго наблюдателя ситуация выглядит одинаково Это механический эксперимент, в нем действуют законы Ньютона.
Теперь изменим условия эксперимента: вместо мячей будут действовать фонарики, посылающие световые лучи в противоположные стороны. Для второго наблюдателя, находящегося в трюме, ситуация будет аналогична предыдущему эксперименту: лучи достигнут противоположных стен одновременно. Но для первого наблюдателя, который неподвижен сам, но видит движение корабля, все будет выглядеть иначе. Скорость света постоянна, закон сложения скоростей в этом случае не работает. Поэтому луч, направленный вправо, достигнет стены позже, чем луч, идущий влево: корабль движется, расстояние для левого луча сократилось, а для правого увеличилось. Получается, что события, одновременные в системе отсчета второго наблюдателя, не одновременны в системе отсчета первого.
Читать дальше
Конец ознакомительного отрывка
Купить книгу